Perception of global form modulates motion responses in human early visual cortex

Huseyin Boyaci(1), Katja Doerschner(1), Seda Eroglu(1), Fang Fang(2), Dan Kersten(3), Ceylan Ozdem(1), Dudu Taslak(1)

(1) Nat. Res. Center for MR, and Department of Psychology, Bilkent University, Ankara, Turkey (2) Department of Psychology and Key Lab. of Machine Perception, Peking University, Beijing, China (3) Department of Psychology, University of Minnesota

Methods

Scanner: Siemens 3T Magnetom trio
Participants: Three participants, all Bilkent undergraduate students
BOLD sequence: TR=2s; TE=40ms; flip angle=71 deg.; 26 slices parallel to CS; slice thickness=3mm; in-plane resolution=3x3mm

When this "pacman" oscillates with a small amplitude about the axis perpendicular to its center, the physical changes in the image are limited to the right visual field. Yet, human observers perceive the entire object as oscillating, including the stationary portion in the left visual field.

Here, we investigate whether this perceptual grouping-dependent implied local motion perception is reflected in cortical activity. Particularly, we are interested to find out whether there is neuronal activity in the right hemispheres of participants' brains, which process the left visual field.

Analysis and results

Preprocessing steps: Motion correction, high pass filtering, linear trend removal, coregistration of structural with functional data

Analysis steps:
* Extract the time course of BOLD signal from the ROI in each visual area
* Compute % BOLD signal change in each run using the scan mean
* Compute the averaged signal for each epoch (static, dynamic)
* Compute at each time point the difference between dynamic and static conditions
* Compute the difference between the Pacman and control conditions in each time point
* Compute the mean difference from the 8th through 12th second

Control condition: The wedge in the control condition oscillates about the axis perpendicular to the fixation mark. This leads to no implied localized motion on the left semi-disk, even though the dynamic features of the change. (overall success rate: 91%; mean reaction time:644ms)

Functional Localizer

110°

V1
V2v
V3d
V3v
V3v
V4
V2d
V3ab
LO-1
MT+

Left Hemisphere

Right hemisphere

Pacman-control (% BOLD signal)

References:

Acknowledgments: Supported by research grants from Turkish Scientific and Technological Association (TUBITAK 2201-128K398), from Turkish Academy of Science (TUBA GEBIP), and from European Commission (PIRG-GA-2008-239467, and PIRG-GA-2008-239494)