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ABSTRACT 
 

The spectral power distribution (SPD) of the light reflected from a matte surface patch in a three-dimensional 
complex scene depends not only on the surface reflectance of the patch but also on the SPD of the light incident on the 
patch. When there are multiple light sources in the scene that differ in location, SPD, and spatial extent, the SPD of 
the incident light depends on the location and the orientation of the patch. Recently, we have examined how well 
observers can recover surface color in rendered, binocularly-viewed scenes with more than one light source. To 
recover intrinsic surface color, observers must solve an inverse problem, effectively estimating the light sources 
present in the scene and the SPD of the light from each that reaches the surface patch. We will formulate the forward 
and inverse problems for surface color perception in three-dimensional scenes and present experimental evidence that 
human observers can solve such problems. We will also discuss how human observers estimate the spatial distribution 
of light sources and their chromaticities from the scene itself and how they might represent it. 
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SURFACE COLOR PERCEPTION IN 3D SCENES 
 
 

In an everyday scene, the light that reaches the eye 
from a matte surface patch depends on several factors. These 
include the surface properties of the patch itself, the location 
and orientation of the patch, the location and orientation of 
other surfaces that might serve as effective illuminants for 
the patch of interest, and the spatial distribution of light 
sources in the scene and their spectral properties. We will 
refer to this last as the lighting model of the scene. This list, 
long as it is, is still incomplete, but it gives us a starting 
point for the study of surface color perception in complex, 
three-dimensional scenes (Maloney, 1999).  The simple 
virtual scene shown in Figure 1 illustrates some of these 
dependencies. The scene is illuminated by a combination of 
a punctate light source (E1) and a diffuse light source (E2), 
both achromatic. These together form the lighting model. 
The punctate light source is simulated to be behind the 
observer, on his right and is not directly visible. The scene 
comprises four matte surfaces, a ground  plane and the three 
surfaces labeled S3, S4, and S5. 

We are specifically interested in how biological 
visual systems extract information about surfaces (albedo, 
color) in such scenes. We are also interested in 
computational vision algorithms that model their performance.  A biological visual system records the intensity and 
chromaticity of the light arriving from each point in the scene (see Maloney, 1999) but this information depends on 
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Figure 1: A very simple scene composed of matte 
surfaces illuminated by a punctate light source and 
a diffuse light source. 
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both the light incident on each surface as well as the properties of the surface. For example, the intensity of light 
arriving from S5 is less than that arriving from S4, but much of that difference is due to differences in how the surfaces 
are illuminated: S5 is obviously in shadow with respect to the punctate light. But do the two surfaces have the same 
albedo? Answering this question correctly presupposes knowledge of the relative intensity of the light from the diffuse 
and the light from the punctate source absorbed and re-emitted by both surfaces.  Similarly, S4 has a faint orange hue, 
the result of light emitted from S3 nearby. S4 is actually achromatic. Even in this very simple scene, working out the 
effective illumination incident on each surface is not easy while determining what this illumination is seems to be a 
necessary step in forming accurate estimates of surface properties.  

The Mondrian singularity. What evidence there is suggests that biological visual systems embody solutions 
to problems of surface property estimation that we cannot yet duplicate algorithmically (Hurlbert, 1998; Maloney, 
1999; Gilchrist et al., 1999; Jacobs, 1981, 1990, 1993; Lythgoe, 1979). Almost all previous experimental research  in 
surface color perception concerns scenes made up of surface patches confined to a plane perpendicular to the line of 
sight, effectively illuminated by a diffuse light source (‘flat world’ in the terminology of Maloney, 1999).  These 
scenes are often referred to as Mondrians (after Land & McCann, 1971). Maloney (1999) notes that there seem to be 
very few cues in such scenes that would permit a visual system, biological or computational, to separate the spectral 
properties of the illuminant from the spectral properties of the surfaces in the scene. Many computational algorithms 
that estimate surface properties corresponding to color make use of cues that are not available in ‘flat world’ but that 
are common in everyday scenes (to give two examples, specular highlights and shadows). Maloney & Yang (2001; 
Yang & Shevell, 2002, 2003) have demonstrated that one of these candidate cues (specular highlights) affects surface 
color perception.  

The underlying theme of Maloney (1999) is that researchers have expended considerable effort to study 
biological surface color perception under circumstances where it does not and perhaps cannot function very well, a 
paradox we refer to as the Mondrian singularity. An examination of surface color perception in more complex scenes 
might give better insight into the range of estimation problems that biological color vision can solve. In this 
proceedings paper, we examine human color vision in a range of three-dimensional scenes with spatially and 
spectrally non-uniform lighting that we refer to as matte world. Our results and results from other laboratories 
(notably Gilchrist, 1977; Gilchrist, 1980; Gilchrist et al, 1999; Brainard, Brunt & Speigle, 1997; Brainard, 1998) 
suggest that human color vision is well-equipped to solve these apparently more complex problems in surface color 
perception. We will first present some of these results and then discuss how biological vision systems may achieve the 
performance they achieve by solving a series of inverse problems. 

 
THE FORWARD AND INVERSE PROBLEMS OF SURFACE COLOR PERCEPTION 

 
Matte world. In Fig. 1, we illustrated these 

factors in an extremely simple scene containing three 
matte surfaces in addition to a matte ground plane. 
The three surfaces are assumed to be small enough in 
visual extent to appear homogeneous to the observer. 
Surfaces S3 and S4 are illuminated by both the 
punctate and diffuse components of the lighting 
model while surface S5 is illuminated only by the 
diffuse component. Surface S4 is also illuminated by 
light that has been absorbed and re-emitted by 
surface S3. We should also take into account light 
absorbed and emitted from the ground plane and light 
resulting from higher-order reflections between S3  
and S4. However, let us stop with these three 
surfaces, limited inter-reflection, and the specified 

lighting model and represent the flow of light among 
them as a light-flow graph (Fig. 2).   

A light-flow graph is a convenient 
representation of how light flows within a scene 
consisting of only matte surfaces. The nodes in a light-flow graph represent light sources (punctate sources 
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Figure 2: The light-flow diagram corresponding to a 
subset of the surfaces in Figure 1. 
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represented by a solid circle, diffuse by a solid semi-circle) or matte surface patches (hollow circles). As just noted, 
the surface patches are assumed to be sufficiently small that the light emitted in all directions does not depend on 
location within the patch.  

The forward problem. The forward problem for a light-flow graph is to predict the light that will arrive at an 
eye or camera placed at a specified location and orientation in the scene. This problem is the problem solved by 
standard rendering and ray tracing methods employed in computer graphics (see Larson &  Shakespeare, 1996). The 
rendering package must determine the intensity and spectral composition of the light that passes along each of the 
arrows in Fig. 2, taking into the locations and specifications of light sources, surface orientation, surface albedo, and 
more. Typical rendering packages allow for non-matte surfaces, transparency, and active media such as mist (Larson 

& Shakespeare, 1996). However, the forward 
problem posed by a small number of matte 
surfaces in a scene with a non-diffuse 
lighting model is sufficient for our purposes. 
What we are interested in here is a series of 
inverse problems implicit in Figures 1 and 2 
that we address below. Estimating surface 
properties in ‘matte world’ is equivalent to 
solving these inverse problems. 

Spatial coordinate system. We used 
a spherical coordinate system ( ), , rψ ϕ  
based on a Cartesian coordinate system to 
describe the geometry of the location in any 
scene (Fig. 3). In the Cartesian system (x,y,z), 
the z-axis will fall along the observer’s line 
of sight, the y-axis is vertical, the x-axis 
horizontal as shown. In the spherical 
coordinate system, a point in the three 

dimensional space is denoted by three 
numbers ( , , )rψ ϕ : r  is the distance of 
the point from the origin, ψ  is the angle 

between the observer’s line of sight (z-axis) and the projection of the point on the horizontal plane (xz plane), ϕ  is the 
angle between the horizontal plane and the line connecting the origin and the point. We refer to ψ as azimuth, ϕ as 

elevation. In scenes containing a punctate light, we will denote the position of the light by ( ), ,P P Prψ ϕ and the 

direction to the light by ( ),P Pψ ϕ . We will denote the orientation of a test patch (the surface whose color or albedo 

the observer judges) by the azimuth and elevation of the normal n  to the surface: ( ),T Tψ ϕ . 
 

INVERSE PROBLEM 1: ALBEDO ESTIMATION 
 

Boyaci et al (2003) examined asymmetric lightness matching in 
rendered scenes illuminated by a combination of achromatic diffuse and 
punctate light sources. The forward problem is captured by the light flow 
diagram in Figure 4. There are two achromatic light sources, punctate and 
diffuse, and an achromatic test patch, S4. The observer’s task is to estimate 
the albedo of the achromatic matte test patch, the proportion of light that it 
reflects. The amount of light from the punctate source depends on the 
orientation of the test patch with respect to the punctate source (see below) 
and the observer can estimate the albedo of the test patch only by 
discounting this effect of orientation. The forward problem is 

y
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z
TψPψ

Pϕ
p
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Figure 3: Spatial coordinate system. 
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Figure 4: Inverse problem 1.  
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straightforward and could be solved with a calculator. The inverse problem, however, is what the observer’s visual 
system must solve.   

All viewing was binocular and Fig. 5 contains a typical stereo image pair. The test patch is the small 
achromatic patch in the center of the scene.  All images were rendered using a standard rendering package 
RADIANCE (Larson & Shakespeare, 1996) and stereo image pairs were created by rendering the same scene twice 
from different viewpoints corresponding to the locations of the observer’s eyes. The punctate light source was out of 
sight, behind the observer and he was given no information about its location other than what could be deduced from 
the scenes presented.  In pilot testing we found that, if the scene contained only the test surface, the observer acted as 
if the position of the punctate light source was unknown.  The large number of extra objects present in the scene are 
potential cues to the spatial  and spectral distribution of the illumination (the lighting model).  Some of these objects 
are specular, and could potentially inform the visual system about the distribution of light sources throughout the 
scene. We return to this issue in a later section. 

 The luminance of the punctate source is denoted by PE  and the spectral power distribution of the diffuse 

light by DE .  The punctate source is placed far enough from 
the test patch so that we can regard it as being at infinity. 
The direction to the punctate light source is, in the notation 
described above, ( ),P Pψ ϕ . 

From trial to trial, the experimenters randomly 
varied the orientation ( ),T Tψ ϕ of the test patch to one of 

seven values shown in Figure 6.  Only Tψ  was varied with 

0Tϕ = o always. 
Boyaci et al assumed that matte surfaces in the 

scene could be modeled as Lambertian surfaces. In the 
Lambertian model, the intensity of emitted light does not 
depend on the direction to the viewer, so long as the viewer 
and the light source are on the same side of the surface. It 
does depend upon θ , the angle between the direction to the 
punctate source and the surface normal (the angle of 
incidence). 

RLR
Figure 5: The left and right images of a stereo pair  in Experiment 1. The test patch is at the center of the 
image. The left and right images are marked L and R  and, for proper fusion, should be viewed by the left 
and right eye, respectively  

Figure 6: Possible orientations of the test patch 
(view from above). 
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 The observer’s task. The observer’s task was to select a reference surface from a set of reference surfaces 
(Fig. 7) that matched the apparent albedo of the test surface. The observer clicked on the left and right button of a 
mouse to move a small green dot up and down the scale. When the green dot was next to the observer’s choice, the 
observer clicked on the middle button to record his choice. The reference surfaces spanned the gamut from black to 

white and the order of the surfaces in the scale was randomized anew on 
each trial.  
 How will the observer’s settings change as function of the 
orientation of the test patch? One possibility is that they will not change. 
This observer effectively ignores orientation in arriving at estimates of 
albedo. A second possibility is that the observer will correctly select the 
reference surface that does match in albedo. To do so, the observer must 
effectively determine how the illumination of the test patch changes with 
orientation. To see what that entails, we must work out the forward problem 
for the conditions of the experiment and then examine what is entailed in 
solving the inverse problem.  
  
The forward problem. Boyaci et al (2003) derived a model of the  
luminance, L , that reaches the observer’s eye as a function of the surface 
albedo,  α , and a geometric factor, ( ),θ πΓ , explained below, 
  

                                   ( ),
EL α
θ π

=
Γ

(1) 

The total luminance, P DE E E= +  is the maximum possible luminance that could reach the eye from punctate and 

diffuse sources reflected from a chip of albedo 1α = . The parameter PE Eπ = is the punctate-total ratio. It 
captures the relative intensities of the punctate and diffuse components of the light. When π  is 0, for example, the 
light is perfectly diffuse, and when it is 1, the light is  punctate only. 
The geometric factor, defined as, 
 

 
( ) ( )

( )

1

1
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−

−
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= − ≥
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o
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characterizes how the location of the punctate source and the test surface orientation affect the intensity of the light 
reaching the eye.  The angle θ  is, as defined above, the angle of incidence of the light from the punctate source. The 
cosine term is a consequence of Lambert’s Law. When θ is greater than 90o  the test patch is in shadow with respect 
to the punctate source. When θ  is 0o , the test patch directly faces the punctate source and ( ), 1θ πΓ = . Eq. 2 
above captures the forward problem. We can use it to compute the light arriving at the eye given a specification of the 
lighting model and the albedo and orientation of the test patch. 

The inverse problem. We can rearrange Eq. 1 to specify the inverse problem: 

 ( ),L
E

α θ π= Γ  (3) 

Given knowledge of the parameters θ , ,π  and E , we can use Eq. (3) to estimate surface albedo given the luminance 
of light reaching the retinas from the test patch, L .  
 Equivalent lighting models. In order to use Eq. (3)  to estimate surface albedo accurately, a visual system 
needs accurate estimates of all of the quantities on the right-hand side of the equation. The intensity of light arriving 

Figure 7: The observer's task was to 
select the reference surface on the 
scale to the right that matched the test 
patch in albedo. 
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from the surface L is what is measured by the sensors of the visual system. Estimates of the orientation ( ),T Tψ ϕ of 

the surface in a scene are needed to work out estimates of the angle θ between the surface normal and the punctate 
light source.  The experiment of  Boyaci et al  also included a control task that allowed them to verify that each 
observer’s  perception of surface orientation was close to the correct values. The remaining values needed are all part 
of the lighting model: the direction to the punctate light source ( ),P Pψ ϕ , the total light intensity E  and the 
punctate-total intensity ratio π .  Part of the task of the visual system is to work out estimates of these parameters (or 

the parameters of an equivalent parameterization). Given estimates of the lighting model parameters ˆ, ˆ , ˆ , ˆP PE ψ ϕ π   , 

together with estimates of test surface orientation and the intensity of light emitted by the surface,  

 ( )ˆ ˆˆ , ˆˆ
L
E

α θ π= Γ  (4) 

where it is easy to show that 

 
-1ˆ cos ( cos ˆ cos ˆ cos ˆ cos ˆ sin ˆ sin ˆ

cos ˆ cos ˆ sin ˆ sin ˆ )
T P T P T P

T P T P

θ ϕ ϕ ψ ψ ϕ ϕ
ϕ ϕ ψ ψ

= +
+

    . (5) 

We refer to the vector of parameter estimates ˆ, ˆ , ˆ , ˆP PE ψ ϕ π   as 

the visual system’s equivalent lighting model, an estimate of the 
true lighting model present in the scene.   
  

 
Results. The results of Boyaci et al indicated that observers 
partially compensated for test patch orientation in the scenes 
employed and that their settings were remarkably consistent with 
the Equivalent Lighting Model (ELM) just described. By fitting the 
ELM to each observer’s data, Boyaci et al obtained an estimate of 
each of the observers’ ELM parameters. The estimates of ˆPψ for 
six observers are shown in Figure 8 together with the true value, 

Pψ . It is clear that we can recover a crude estimate of light 
direction based only on observers’ matching data in the 
experiment, demonstrating that their matching performance takes 
into account the spatial distribution of illumination in the scene.  
These results were replicated by Ripamonti et al (2004) in a more 
complex design using physical surfaces and lights (not rendered 
scenes).  

  
 Two points:  First, we do not claim that the observer’s 
visual system uses precisely the parameterization of the 
equivalent lightning model that we developed above 

( ˆ, ˆ , ˆ , ˆP PE ψ ϕ π   ). We claim only that, the observer’s visual system represents the spatial distribution of light in the 

scene and that this representation contains information equivalent to ˆ, ˆ , ˆ , ˆP PE ψ ϕ π   . Second, a related question is, 

how does the visual system form estimates of the parameters in the equivalent light model? 

Figure 8: Estimates of the azimuth of the 
punctate light source. 
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INVERSE PROBLEM 2 : CHROMATICITY ESTIMATION 
 
Color.  The second inverse problem we consider is estimation of surface 
color in scenes with multiple light sources differing in chromaticity. The 
light-flow diagram of the forward problem is shown in Figure 9. The lighting 
model consists of a punctate yellow light source (‘sun’)  and a diffuse blue 
light source (‘sky’) and the test surface is illuminated by a mixture of the two 
that depends on the orientation of the test surface as well as the lighting 
model. The observer’s task is to set the test patch to be neutral (grey).  
 This inverse problem is dual to the first in the sense that, in the first, 
the observer’s visual system had to compensate for the contribution of 
diffuse and punctate light sources that were achromatic in estimating the 
albedo of a test patch that was neutral in color appearance. Now the observer 
must work out the blue-yellow balance of light incident on a test patch implicit 
in the spatial organization of the scene and set the chromaticity of the light 
emitted by the surface to be consistent with that of an achromatic surface. The lighting model in this second case is 
more complex than that we developed in considering the first inverse problem. The observer’s visual system must 
now estimate not only the location of the punctate sources, the intensities of the two sources, but also their 
chromaticities.  
 The experimental design was similar to that of Boyaci et al (2003) except that the test patch was varied in 
both azimuth and elevation ( ),T Tψ ϕ  from trial to trial and the direction to the punctate source ( ),P Pψ ϕ was also 
varied: it could be behind the observer on his left or on his right. A typical scene is shown in Figure 10. Note how the 
chromaticity varies in going from fully-illuminated surfaces to shadow.  The test patch ‘floats’ in front of the other 
objects in the scene. Again, these objects are potential cues that the visual system may use to estimate the lighting 
model. 

Results. Boyaci et al (2004) fit an equivalent lighting model to observers’ achromatic settings. The estimates of the 
azimuth Pψ and the elevation Pϕ of the punctate yellow light source are plotted in Figure 11 along with the true 
values (recall that two values of azimuth were employed in the experiment). Boyaci et al were able to recover crude 
estimates of light source direction from the observer’s surface color estimates in scenes where the spectral distribution 
of the light was not spatially uniform.  These are plotted in Figure 11. There are four estimates of azimuth (one for 
each observer)  for the light source on the left and four for the light source on the right. There are eight corresponding 
estimates of elevation. With one exception the eight estimates of elevation are within 10 degrees of the true values. 
The estimates of elevation are tightly clustered, within 10 degrees of the true values, with one exception.  
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Figure 9: The second inverse 
problem.  

RLRFigure 10: An example of a stereo image pair from Boyaci et al (2004). The format is identical to that of 
Figure 5. 
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  The outcome of the experiment in Boyaci et al (2004)  together with the results of Boyaci et al (2003) imply 
that the observer’s visual system effectively develops an equivalent lighting model of the spatial and spectral 
distribution of illumination within a scene and uses this model in estimating albedo and surface color.  

 
 

INVERSE PROBLEM 3:  DISCOUNTING INTER-REFLECTION 
 
 
Inter-reflection. So far we have considered lighting models 
where all of the light sources are effectively placed at infinity.  
In complex scenes, the light emitted by one surface can fall on a 
second, becoming, in effect, a component of the illumination 
incident on the second. The corresponding light-flow diagram is 
shown in Figure 12.  
 In Figure 13A, for example, the light gray matte test 
surface marked T absorbs light that reaches it directly from the 
single light source in the scene.  It also absorbs light that arrives 
from the same light source but only after being absorbed and re-
emitted from the nearby orange surface marked C (Fig. 13B).  
Part of the light absorbed and re-emitted by the test surface will 
in turn be absorbed and re-radiated by the orange surface, 
initiating an infinite series of interreflections between the 
surfaces.  If we denote the spectral power distribution of the 
original illuminant by (0)( )E λ  and the surface reflectance 

Figure 11: A. Fitted estimates of the azimuth of the punctate light for four observers and the corresponding 
true azimuths when the punctate light was on the observer's left or right. B. Estimates of the elevation of the 
punctate light for the same observers. 
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Figure 12: The third inverse problem. 
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functions of the two surfaces by ( )CS λ (cube) and ( )TS λ (test surface), then the light emitted from any specified 

small region of the surface toward the observer can be written in the form ( ) ( )TE Sλ λ  where  

 ( ) ( )( )
0

i i
i

E Eλ γ λ
∞

=

=∑         (6) 

 
is the effective illuminant. It is the weighted sum of the direct illumination, ( )(0)E λ , and the inter-reflected 
illuminants, 
 

 
( ) ( ) ( ) ( )

(1) (0)

( 2) ( )

( ) ( ) ( );

0,1,

C

i i T C

E E S

E E S S i

λ λ λ

λ λ λ λ+

=

= = L
     (7) 

The geometric factors  iγ  are determined by the sizes and shapes of 
the two surfaces, their separation, and their orientations with respect 
to one another and with respect to the primary light source.  We will 
assume that they do not depend on wavelength λ  in the 
electromagnetic spectrum.  To make stable estimates of the surface 
color and albedo of a surface in a scene, independent of scene layout 
or illumination, a visual system must discount the effective illuminant 

( )E λ  at each point in the scene, even when that illumination 
includes contributions from other surfaces in the scene. There is some 

evidence that human observers do so, if only partly and imperfectly (Bloj, Kersten & Hurlbert, 1999). Doerschner, 
Boyaci & Maloney (2004) examined how observers estimate surface color in scenes similar to the one shown in 
Figure 14. The scene was illuminated by a single neutral punctate light source placed behind the observer.  
 The observer’s task. The observer was asked  to set the color of the small test patch adjacent to the cube to 
appear to be a neutral grey (achromatic setting). The test patch is embedded in a dark grey rectangular surface to make 
it easier to judge the test patch orientation. The experimenter varied the angle between the test surface (including the 
dark grey rectangle in which it is embedded) and the large orange cube from trial to trial. The observer’s achromatic 
settings were fit to a equivlaent ilumination model of  that took into account the inter-reflection between surfaces.  
 Results. Doerschner et al found that observers systematically but only partially discounted the effect of light 
reflected from the large orange cube in making achromatic settings. In effect, they consistently underestimated the 
contribution of inter-reflected light to the perceived chromaticity of the test patch, possibly by underestimating the 
area of the cube that contributed light to the test surface.  However, the pattern of discounting as a function of the 
angle of the test patch was almost perfectly captured by the equivalent lighting model once this underestimation was 
taken into account. 

Figure 14: A pair of stereo images from Doerschner et al (2004). Format as in Figure 5. 

A B

Figure 13: inter-reflection. 

SPIE-IS&T/ Vol. 5674     23



 

CUES TO THE LIGHTING MODEL 
 
 The experimental results just summarized indicate that observers take into account the orientation of surfaces 
and the spatial layout of light sources in a scene and that they substantially compensate for both in estimating surface 
albedo and color, effectively solving a series of inverse problems. Our results motivate the following question 
concerning the estimation of the parameters of 
an equivalent lighting model. What cues 
(sources of information) within the scene does 
the visual system employ in estimating the 
spatial and spectral distribution of the light?  
 The scenes we used contained several 
candidate cues to the spatial and spectral 
distribution of illumination: specular highlights, 
cast shadows, and shading, as illustrated in 
Figure 15. In previous work, Yang & Maloney 
(2001; Yang & Shevell, 2002, 2003) 
demonstrated that the visual system makes use 
of specular highlights in estimating the 
chromaticity of the illuminant. Boyaci et al (in 
preparation) report an experiment that tested 
directly whether observers could use each of 
these cues in estimating the spatial distribution 
of light in a scene where the illuminant 
consisted of a neutral punctate source and a 
neutral diffuse source (as in Boyaci et al, 
2003).  

 Observers saw four different kinds of 
scenes (Figure 16). The scenes were binocularly 
presented as in the previous experiments 
described. The first three kinds contained only 
one cue to the spatial distribution of the 
illuminant (Figure 16A-C). The last kind 
contained all three types of cues, effectively 
superimposed as in Figure 3D. The observers 
task was as in Boyaci et al (2003): match the 
albedo of a test surface to one of the references 
surfaces in a scale.  
 Results. We fit equivalent lighting 
models to observers’ data. The key analysis was 
to test whether observers’ estimates of the 
punctate-diffuse ratio π were greater than 0. 
This would imply that they had detected the 
punctate source and estimated its direction 
within the scene. We concluded that observers 
did use the available cue in all scenes 
containing one kind of cue and that some 
observers used more than one cue when more 
than one cue was available (Figure 16D).  
 
 

 

A B

C D

     Figure 15: Candidate cues to the illuminant. 

Figure 16: Candidate cues (right images of stereo pairs). (A) 
cast shadows only, (B) shading only, (C) specular highlights 
only, (D) all three cues combined. 
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CONCLUSION 
 
 We have presented a series of experimental tests of human color vision in complex, three-dimensional 
scenes. Each test was formulated as an inverse problem (where the forward problem was effectively simulation of 
light flow within the scene). Solving the inverse problem required that the observer’s visual system effectively 
estimate the lighting model for the scenes employed in the experiment.  
 We found that observers made judgments of surface color and albedo that indicated that they had partially 
but systematically solved the corresponding inverse problem. The deviations from veridical performance were 
consistent with the hypothesis that observers had misestimated the location, chromaticity, and intensity of light 
sources within the scene and had used these misestimates in solving the inverse problem.  
 Much previous work on color vision has employed scenes consisting of a uniformly-illuminated flat surface 
covered with matte surface patches all perpendicular to the observer’s line of sight, a Mondrian.  The inverse problem 
for Mondrian scenes is very simple: its solution only presupposes an estimate of the chromaticity and intensity of the 
illuminant. It is therefore somewhat surprising that, given only the retinal images corresponding to a Mondrian scene, 
it is not possible to estimate the chromaticity of the illuminant in the scene without additional constraints and 
impossible to solve the corresponding inverse problem (Maloney, 1999).  The inverse problem is ill-posed, a result we 
refer to as the ‘Mondrian singularity’. 
 The scenes in the experiments reported here correspond to more complex inverse problems, where accurate 
estimation of the color and albedo of surfaces within the scene presupposes that the visual system effectively estimates 
more about the spatial and spectral distributions of the illuminant. However, these scenes also contained additional 
candidate cues that specifically provide information about the lighting model. These inverse problems are not ill-
posed and we find that human observers seem able to use the illuminant cues that we provide to solve them.  
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