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Abstract

We investigated limits on the human visual system’s ability to discount directional variation in complex lights field when estimating
Lambertian surface color. Directional variation in the light field was represented in the frequency domain using spherical harmonics.

The bidirectional reflectance distribution function of a Lambertian surface acts as a low-pass filter on directional variation in the light
field. Consequently, the visual system needs to discount only the low-pass component of the incident light corresponding to the first nine
terms of a spherical harmonics expansion [Basri, R., Jacobs, D. (2001). Lambertian reflectance and linear subspaces. In: International

Conference on Computer Vision II, pp. 383–390; Ramamoorthi, R., Hanrahan, P., (2001). An efficient representation for irradiance envi-
ronment maps. SIGGRAPH 01. New York: ACM Press, pp. 497–500] to accurately estimate surface color. We test experimentally
whether the visual system discounts directional variation in the light field up to this physical limit. Our results are consistent with the
claim that the visual system can compensate for all of the complexity in the light field that affects the appearance of Lambertian surfaces.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In everyday scenes, illumination typically varies from
location to location. At any fixed point within a scene,
the light arriving from different directions may also vary.
As a consequence, the light absorbed by a small matte
patch in the scene can depend on both its location and its
orientation and any attempt to estimate the surface albedo
or color of the patch must effectively discount this variation
in the light field (Gershun, 1939).

Researchers have shown that the visual system does
compensate in part for changes in surface orientation
and position when estimating the albedo or color of matte
surfaces in three-dimensional scenes (Hochberg & Beck,
1954; Flock & Freedberg, 1970; Gilchrist, 1977, 1980;
Bloj, Kersten, & Hurlbert, 1999; Boyaci, Maloney, &
0042-6989/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Hersh, 2003; Boyaci, Doerschner, & Maloney, 2004;
Ripamonti et al., 2004; Doerschner, Boyaci, & Maloney,
2004; Maloney, Boyaci, & Doerschner, 2005; Snyder,
Doerschner, & Maloney, 2005; Boyaci, Doerschner, &
Maloney, 2006).

The lighting in these experiments typically consisted of a
small number of light sources—a single punctate source
and occasionally an additional diffuse source—by adding
light sources, one could create ever more complex light fields.

This leads to an important question: can the visual sys-
tem continue to estimate matte surface color as well as it
has under simple lighting conditions as we increase the
complexity of illumination in the scene? Alternatively
put, for what range of light fields can the visual system
compensate in estimating the albedo or color of matte
surfaces?

In this study we address this question by first describing
an upper limit on the possible complexity of light fields.
This limit, corresponding to a spherical harmonic
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subspace, is based on analytic work by Basri and Jacobs
(2001) and Ramamoorthi and Hanrahan (2001). We then
report an experiment intended to test a conjectured lower
limit, framed in the frequency domain. In order to describe
the results, analytical and experimental, and their implica-
tions for surface color perception, we develop notation for
the light field, introduce spherical harmonics and describe a
remarkably simple characterization in the frequency
domain of how light and matte surfaces interact.
1.1. The light field

The light field of a given space is the illumination as a
function of direction and position (similar to the plenoptic
function of Adelson & Bergen, 1991). The local light field
Ep(h,u,k), is the illumination arriving at a point p in
three-dimensional space, specifying the intensity of light
as a function of direction, with elevation h ranging from
0 to p, and azimuth ranging from 0 to 2p, and wavelength
k in the electromagnetic spectrum. The local light field (or
environment map) can be visualized as a collection of light
rays, each with a spectral power distribution, originating
from all directions and impinging on point p (Fig. 1A).
We concentrate on the spatial component of the local light
field Ep(h,u), and how it varies as a function of elevation h,
azimuth u, at a fixed point p (See Fig. 1A and B, and also
Appendix A). We can unwrap the sphere and also plot the
A

B

Fig. 1. Illustration of the light field. (A) A light field, u denotes azimuth, h
denotes elevation. (B) An ‘unwrapped’ version where azimuth and
elevation now correspond to horizontal and vertical axes, respectively.
The environment map for this illustration was obtained from http://
www.debevec.org/Probes.

Fig. 2. Light field directional structure and surface appearance. Images
were rendered with Radiance (Ward, 1994). (A) A mirror sphere (left) and
matte sphere (right) were rendered using the same light probe (http://
www.debevec.org/Probes). (B) We low-pass filtered the light probe,
removing fine spatial detail. Under this illumination the mirror sphere
ceases to look chrome-like and changes its appearance to that of a brushed
metal. The matte sphere however does not change in appearance. In the
text we explain why. (C) A was subtracted from B. The values of the
resultant difference image were squared Dark gray indicates zero
difference.
light field1 by elevation and azimuth as illustrated in
Fig. 1B.
1.2. Light field structure and surface appearance

As we noted above, in every day scenes the spatial struc-
ture of light fields can be complex considering the full range
of skylight as well as the complexities of shadows and light
absorbed and re-emitted by other surfaces in the scene
(Fig. 1). However, not all of the directional variation in
the light field may need to be taken into account by the
visual system for every task.

As an example consider Fig. 2. Fig. 2A depicts two
spheres: while the left one is mirror-like and the right one
1 We refer from this point on to the local light field as light field (or
interchangeably as environment map).

http://www.debevec.org/Probes
http://www.debevec.org/Probes
http://www.debevec.org/Probes
http://www.debevec.org/Probes


3 For any N P 0, the spherical harmonics functions form a basis for a
subspace that is closed under rotation. The subspace corresponding to
N = 0 contains only the rotationally invariant constant function Y00. As
N!1 subspaces can represent light fields with increasing spatial
complexity.
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appears to be covered with a matte paint, both spheres are
illuminated by the same light field. If we reduced the spatial
complexity of the light field by blurring E(h,u) at each
point of the mirror sphere (Fig. 2B), the sphere would
now appear to be made from a different, brushed metal-like
material (Fleming, Dror, & Adelson, 2003; and te Pas &
Pont, 2005, 2006). However, blurring the light field has lit-
tle effect on the appearance of the matte sphere in Fig. 2B.
Matte surfaces seem to be ‘indifferent’ to the fine spatial
details in the light field that are lost in blurring. (Fig. 2C
shows the difference-images of 2A and 2B.)

This ‘indifference’ is due to the special properties of the
Lambertian bidirectional reflection distribution function
(BRDF; Nicodemus, Richmond, Hsia, Ginsberg, & Limpe-
ris, 1977; Dutre, Bekaert, & Bala, 2003; Cabral, Max, &
Springmeyer, 1996). Basri and Jacobs (2001, see also Ram-
amoorthi and Hanrahan, 2001) using a spherical harmonic
expansion of both a kernel that represents Lambert’s reflec-
tance (Haralick & Shapiro, 1993) and the spatial compo-
nent of the light field, thereby taking their analysis into
the spatial frequency domain, demonstrated that a Lam-
bertian surface essentially acts as a low-pass filter on the
light field. This ‘low-pass filtering’ property is precisely
what accounts for the nearly unchanged appearance of
the matte sphere in Fig. 2. Consequently, if the visual sys-
tem’s task is to judge the color or albedo of a Lambertian
surface it could disregard the higher spatial frequencies in
the light field. In order to quantify this limit we rely on ana-
lytical results by Basri and Jacobs (2001) and Ramamoor-
thi and Hanrahan (2001) described next.

1.3. 4D and 9D subspace models of the light field

Notation: in this article we are concerned with direc-
tional variation in the light field Ep(h,u) at a single fixed
point p. For simplification, we will omit the subscript p

in Ep(h,u).

1.4. Spherical harmonics

Spherical harmonics, Ynm(h,u), provide an orthonormal
basis with which one can express a function defined on the
surface of a sphere. They have been employed by numerous
researchers in perception and computer graphics to study
light and surface reflectance (e.g. D’Zmura, 1991; Cabral
et al., 1996; Nimeroff, Simoncelli, & Dorsey, 1994; Teo,
Simoncelli, & Heeger, 1997; Basri & Jacobs, 2001; Ramamo-
orthi & Hanrahan, 2001). Any light field E(h,u) can be writ-
ten as a weighted sum of the harmonic basis functions,

Eðh;uÞ ¼
X1
n¼0

Xn

m¼�n

enmY nmðh;uÞ; ð1Þ

where enm denote the lighting coefficients.2
2 Lighting coefficients are computed as enm ¼
R p

0

R 2p
0 Eðh;uÞY nmðh;uÞ

sin hdhdu.
The spherical harmonic expansion (Eq. (1)) defined on
the sphere is analogous to Fourier series defined on an
interval and, like Fourier series, they provide a convenient
way to analyze spatial structure.
1.5. Spherical harmonic subspaces

The projection of any light field E(h,u) represented by a
spherical harmonics series (Eq. (1)) onto the Nth subspace
is formed by simply truncating the spherical harmonics
expansion, as we might truncate a Fourier series after a
fixed number of terms,

PN Eðh;uÞ ¼
XN

n¼0

Xn

m¼�n

enmY nmðh;uÞ: ð2Þ

The projection operation replaces the light field by its ‘low-
pass’ approximation confined to the specified subspace.3

We will be primarily concerned with PN for the cases
N = 1 (the 4D subspace) and N = 2 (the 9D subspace), as
explained below.

When N = 1, the first four spherical harmonic basis
functions4 Y 00; Y 1;�1; Y 10; Y 11f g (Fig. 3) span a subspace
that can represent one maximum of intensity (one ‘bump’
of light) anywhere on the sphere. Any light field in this sub-
space is completely specified by the lighting coefficients
e00, e1,�1, e10, e11. The first nine spherical harmonic compo-
nents Y 00; Y 1;�1; � � � ; Y 20; Y 21; Y 22f g (Fig. 3) span a 9D sub-
space (corresponding to N = 2) that can represent light
fields with up to two maxima of intensity (two ‘bumps’
of light).
1.6. The 4D subspace conjecture

If a visual system had an accurate estimate of the nine
coefficients e00, e1,�1, e10, e11, e2,�2, e2,�1, e20, e21, e22 which
specify the low-pass component5 P2Eðh;uÞ of the light field
in the ‘two bump’ subspace it could estimate matte surface
color with high accuracy (See Appendix B). However, an
even tighter conjecture can be formulated.

Previous results (e.g. by Boyaci et al., 2003, 2004, 2006;
Ripamonti et al., 2004; Doerschner et al., 2004; Maloney
et al., 2005) demonstrated that observers discount direc-
tional variation in the light field, in the case where
E(h,u) consisted of a single punctate source (and, in some
cases, an additional diffuse source) when estimating the
color of matte surfaces. However, all of these results could
4 Note that when m is negative in the subscript nm, we insert a comma to
improve readability.

5 We will use the terms ‘low frequency’, ‘high frequency’, ‘low-pass’, etc
by analogy to Fourier series.
.



Fig. 3. The 4D and 9D spherical harmonics subspaces. Shown are the first
nine spherical harmonics basis functions in spherical coordinates. Since
they reside on the sphere, the dimensions of these basis functions are
p · 2p (elevation · azimuth). Middle gray denotes zero, white are positive,
and black are negative values. Vertical axes correspond to the elevation in
the range [0p], horizontal axes correspond to azimuth in the range [�pp].
When approximating an arbitrary light field with the 1st order harmonics
(or the 4D subspace: Y0,0,Y1,�1,Y1,0,Y1,1), one can have at most one
maximum of intensity (one-bump) in the expansion. If a light field is
approximated with 2nd order harmonics (or the 9D subspace:
Y0,0,Y1,�1,Y1,0,Y1,1,Y2,�2,Y2,�1,Y2,0,Y2,1,Y2,2), two (sufficiently distant
from each other) maxima of intensity in the light field can be detected in
the expansion.
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be accounted for if observers discounted merely the 4D
approximation P1Eðh;uÞ, the ‘one bump’ subspace. We
note that a 4D subspace representation of the light field still
accounts for 94% of the appearance variation in Lamber-
tian surfaces (Basri & Jacobs, 2001).

But, if the visual system only resolves the directional
variation in the illumination up to a 4D subspace, then
observers should not be able to discount the effects of a
light field which consists of two widely spaced distant punc-
tate sources (two maxima of intensity). In order to discount
more than one punctate source the visual system needs to
resolve the directional variation in the light field at least
up to a 9D spherical harmonic subspace. We therefore test
the 4D subspace conjecture by examining human percep-
tion of matte surface color in scenes with two punctate
sources as described in the Section 2.2.
2. Experiment

2.1. Introduction

The main goal of the experiment was to assess the visual system’s res-
olution of the directional variation in the illumination in the scenes used.
More specifically, we wished to discover whether observers discount the
directional variation in the illumination equivalent up to the frequency
limit of a 4D or of a 9D subspace. We accomplished this by measuring
observers’ achromatic settings (Helson & Michels, 1948) of a Lambertian
test patch embedded in rendered scenes which were illuminated by a super-
position of three light sources: two were angularly separated punctate
lights placed sufficiently far from the scene so as to act as collimated
sources. The third light source was diffuse. The two punctate sources dif-
fered in chromaticity from the diffuse light (see Section 2.2 for details). As
explained below, the two punctate sources were positioned so that predic-
tions of observers’ performance for discounting directional variation in the
illumination up to a 4D subspace would clearly differ from the predictions
for an observer discounting the directional variation up to a 9D subspace.

2.2. Methods
2.2.1. Familiarization procedure

Prior to the main experiment observers participated in a short proce-
dure intended to familiarize them with the task.

2.2.2. Setup

Stimuli were two 5 · 5 arrays of colored paper chips. Each array con-
tained exactly the same colored chips; however the position of a chip in
array 1 and 2 was randomized. Each chip was indexed by a number, refer-
ring to its position. The two arrays were placed on the back wall of a
black-painted box. The box was open along one side and contained a sep-
aration wall at the center, creating two compartments. The left compart-
ment was illuminated by a reddish light, the right by a neutral-yellowish
light. The light sources were not directly visible to the observer. Observers
were seated in an otherwise dark room, about 40 cm away from the open
side of the black box (about 80 cm from the stimuli), and were allowed to
view the two arrays of colored chips freely.

2.2.3. Task

First, the experimenter read out loud a number corresponding to the
position of a chip located in the left array and the observer’s task was
to name the number of, or point to the chip in the right array which he
or she thought was made from the same piece of colored paper. This
was continued for a total of 10 trials. After that, the experimenter placed
colored chips in the left compartment, (illuminated by the reddish- light)
and the observer was asked to pick up each chip and to move it from
the left compartment to the right (in effect changing the illumination arriv-
ing upon that chip). Observers were not given any feedback about their
performance upon completion of the session. Completion of all trials took
about 5–7 min.

Note that, this experiment was not a screening test, and merely served
to familiarize the observer with judging surface color under illuminants
differing in chromaticity and to clarify the instructions given to the obser-
ver in the main experiment. Therefore performance was not analyzed and
is not reported here.

2.3. Main experiment
2.3.1. Stimuli

Our stimuli were computer-generated scenes (software: Radiance,

Ward, 1994) each composed of a matte ground plane and a number of
objects of various shapes (such as spheres, cubes, or cylinders), sizes,
and reflectance properties. These objects served as possible cues to the spa-
tial distribution, intensities and chromaticities of the light sources (Yang &
Maloney, 2001; Boyaci et al., 2006) in our scenes. Their positions varied
randomly from trial to trial. The background in the scenes was dark blue.
All scenes contained a smooth, Lambertian rectangular test patch at the
center and were rendered twice from slightly different viewpoints corre-
sponding to the positions of the observers’ eyes. The stimuli were viewed
in a computer-controlled stereoscope. Fig. 4 depicts a typical stereo pair of
stimuli.

2.3.2. Tri-stimulus rendering

Most rendering packages render a three-channel approximation to
light-surface interaction in scenes. This approximation is not always accu-
rate (See the ‘RGB Heuristic’, Maloney, 1999) particularly when light



Fig. 4. Example of a stereo pair of stimuli (for crossed and uncrossed fusion). Stimuli were computer-generated scenes each composed of a matte ground
plane and a number of objects of various shapes, sizes, and reflectance properties. Scenes contained a Lambertian, rectangular test patch at the center.
Observers viewed stimuli in a computer-controlled stereoscope.
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from one surface illuminates a second (inter-reflection). To avoid such
problems we employed the techniques described in Doerschner et al.
(2004, pp. 96), in particular, we designed scenes so that light from other
surfaces in the scene could not illuminate the test surface.

2.3.3. Illumination: Spherical coordinates

The azimuths of the two punctate sources are denoted ui, i = 1,2, and
the elevations hi, i = 1,2. The elevations were always set to hi = 65�,
i = 1,2. The azimuths were varied between conditions. In the 160�-condi-

tion, the two punctate lights were placed symmetrically about the line of
sight with u1 = 80� and u2 = �80�. The separation on azimuth of the
punctate sources was therefore 160�. In the 90�-condition, the two punctate
lights were placed symmetrically about the line of sight with u1 = 45� and
u2 = �45�. The separation in azimuth of the punctate sources was 90� in
this condition (Figs. 5 and 6A). The punctate light sources were placed suf-
ficiently far (665 cm) from the test patch and we treat them as collimated
sources (Kaufman & Christensen, 1972).

2.3.4. Illumination: Chromaticities

The light radiating from surfaces was described as a weighted mixture
of three abstract primary lights (red, green, blue), whose spectra coincide
with those of the corresponding guns of the monitors. The three primaries
were linearized versions of the guns. The intensities of the three primaries
Fig. 5. Example of scenes under the 90� (left) and 160� (right) illumination
illuminated by a composition of a diffuse blue source and two yellow punctate
were measured in arbitrary units proportional to their luminance, such
that a mixture of the primaries with equal intensities appeared roughly
achromatic to most observers. The tri-stimulus values (essentially the
weights of the three primaries) (Wyszecki & Stiles, 1982, p.120) that
describe the light at a particular location on the monitor are referred to
by us for convenience as RGB codes. When making an achromatic setting
the observer selects the RGB code that makes the test patch appear ach-
romatic, as described below.

There were two punctate light sources in every scene and the intensity
and chromaticity of the two punctate light sources were always the same.
For convenience, in defining the parameters that affect the intensity and
chromaticity of the punctate light sources, we will use the subscript P to
denote either light source (e.g. LP). When we need to distinguish one light
source form the other, we will add a subscript, e.g. P1. We use the sub-
script D for the single diffuse source.

The RGB codes of the two punctate and the diffuse light sources were
denoted by LR

P , LG
P , LB

P and LR
D, LG

D, LB
D. We define LP ¼ LR

P þ LG
P þ LB

P ,
LD ¼ LR

D þ LG
D þ LB

D. The chromaticity coordinates (Wyszecki & Stiles,
1982) of the punctate light sources were specified as pR ¼ LR

P=LP ,
pG ¼ LG

P =LP , pB ¼ LB
P=LP and the chromaticity coordinates of the diffuse

light source as dR ¼ LR
D=LD, dG ¼ LG

D=LD, dB ¼ LB
D=LD. Further we define

the diffuse-punctate ratio D = LD/(2LP), a measure of the relative intensity
of the diffuse light source and the two punctate light sources. The values
conditions. Only the left image of each stereo pair is shown. Scenes are
sources either 90� apart (left), or 160� apart (right).



A B

Fig. 6. Lighting and test surface coordinates. (A) Lighting coordinates. Scenes in both experiments were illuminated by a mixture of two yellow punctate
sources (P1,P2) and one diffuse blue light. The azimuth and elevation of the yellow sources were denoted by hi and ui (i = 1,2), respectively. At ui = 0� lies
the line of sight of the observer. The punctate source was placed sufficiently far (d = 665 cm) from the test patch so that it was effectively a collimated
source. Its elevation was hi = 65� and never varied throughout the experiment. (B) Test surface coordinates. The azimuth of the test patch was denoted uT

(uT = 0� corresponds to the line of sight of the observer, i.e. the test patch surface normal would be pointing directly towards the observer). The patch was
simulated to approximately 70 cm away from the observer, and its azimuth (uT) could take on one out of nine orientations {�65� �45� �25� �10� 0� 25�
45� 65�}. The elevation of the test patch p/2 was never varied throughout the experiment.
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used in rendering our scenes were pR = 0.5, pG = 0.5, pB = 0, (yellow punc-
tate), dR = 0, dG = 0, dB = 1 (blue diffuse). The diffuse-punctate ratio was
set to D = .245.6 The terms yellow and blue will be used as mnemonics for
light source chromaticities for the remainder of the paper.

We used chromatic light sources to improve the power of the experi-
ment, i.e. the local light field varies in intensity as well as chromaticity
across directions, and to maintain comparability with past work (Boyaci
et al., 2004). We do not claim they are representative of illuminants in
the everyday environment.

2.3.5. Test surface: Spherical coordinates

Each scene contained a Lambertian test patch at the center whose
albedo was 0.55. The patch was simulated to be located about 70 cm away
from the observer, and its azimuth (uT) could take on one out of nine ori-
entations {�65��45��25��10�0�10�25�45�65�} on a given trial. The
elevation hT of the test patch was equal to p/2 and was never varied
(Fig. 6B).

2.3.6. Angle of incidence

The cosine of the angle between test patch normal and a given punctate
source is given by n Æ p, where n = U(hT,uT) is the direction of the test
patch normal, and p = U(hP,uP) is the unit vector in the direction to
the punctate source. For the special case of our experiment, where the ele-
vation of the test surface is always hT = p/2, this reduces to,

cos g ¼ sin hP cosðuT � uP Þ: ð3Þ

Naturally we have to consider two angles of incidence, one associated with
each punctate source, hence we will consider two cosines terms cosg1 and
cosg2 in the derivations below.

2.3.7. Task

Observers were asked to adjust the color of the test patch until it was
perceived to be achromatic (‘cut from a gray piece of paper’). Let
SR; SG; SB
� �

denote the RGB setting of the test patch which is under the
control of the observer. This setting could be adjusted by using a computer
keyboard, and could be varied in the blue–yellow (tradeoff between SB and
SR + SG) and red–green directions (tradeoff between SR and SG), while
holding SR + SG + SB constant.
6 For more information on realism & rendering and calibration (lookup
table preparation & luminance measurements) please refer to the method
section in Boyaci et al. (2004).
2.3.8. Randomized initial test patch settings

Before presenting a given scene we replaced the test patch’s RGB code
with a randomly chosen one, keeping the sum of the intensity of three
primaries of the test patch constant.

2.3.9. Procedure

The experiment was blocked by illumination condition. The order was
randomized for each observer; half the observers started with the 90�-con-
dition, the other half with the 160�-condition. In each illumination block
observers made achromatic adjustments for nine test patch orientations
{�65��45��25��10�0�10�25�45�65�}, each orientation was repeatedly
presented 20 times. The order of test-patch orientations was randomized.
There was no time constraint for the completion of a trial. Observers were
allowed to practice the task for a few trials before starting the experiment.
Each block took the observers less than an hour. Typically the two exper-
imental blocks were completed on two different days.

2.3.10. Observers

Four New York University undergraduate or graduate students partic-
ipated as observers in the experiment. All four observers were unaware of
the purpose of the study. Observers had normal or corrected to normal
visual acuity and normal color vision.
3. Analysis and results

3.1. Geometric chromaticity functions

In this section we derive what the settings of an ideal
observer would be for a spectrally unselective test surface
as a function of test surface orientation uT for different
configurations of the punctate light sources. We emphasize
that observers in the experiment never saw the actual gray
patch whose RGB code was consistent with the rest of the
rendered scene.

We define

T Bðg1; g2Þ ¼ aðLB
P ðcos g1 þ cos g2Þ þ LB

DÞ; ð4Þ

as the total light in the B-component reaching the obser-
ver’s eye, where a is the albedo of the test patch and LB

P



Fig. 7. Predictions of relative blue in the 90� and 160� illumination condition, for a 4D and 9D subspace expansion of the lighting model. Shown are the
predictions of relative blue settings (KB) as a function of test patch orientation (uT) for both illumination conditions (left 90�, right 160�). Graphs depict KB

of an ideal observer discounting the directional variation in the illumination up to a 4D subspace (dashed line) or a 9D subspace (solid line).

7 The minimum angular separation between two punctate sources that
results in two maxima of intensity in the 9D light field model is
approximately 98�.
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is the maximum possible contribution of either punctate
light source to the B-component of the light. We define
similar expressions for the R- and G-components, thereby
specifying the tri-stimulus coordinates

Tðg1; g2Þ ¼ ½T Rðg1; g2Þ; T Gðg1; g2Þ; T Bðg1; g2Þ�; ð5Þ

of the total light that would reach the eye from a neutral
test patch.

We can describe the change in chromaticity of the light
reflected by the test patch across different orientations by
means of geometric chromaticity functions K(g1, g2) =
[KR(g1,g2), KG(g1, g2), KB(g1, g2)]. The geometric b-chroma-

ticity function is defined as

KBðg1; g2Þ ¼
T Bðg1; g2Þ

T Rðg1; g2Þ þ T Gðg1; g2Þ þ T Bðg1; g2Þ
: ð6Þ

KR(g1,g2) and KG(g1, g2) (the geometric r- and g-chromatic-
ity functions, respectively) are defined analogously. We
verified that predicted r-, b- and g-chromaticity values were
in good agreement with those of a rendered neutral test
patch at the correct position and orientation within each
scene (mean squared error <0.000004).

3.2. 4D and 9D low-pass chromaticity functions

As shown in Fig. 7, KB(g1,g2) differs when 4D or 9D sub-
space projections of the light field are used. For details on
the spherical harmonic expansion of diffuse and punctate
sources refer to Appendix C. The chromaticity of the light
reflected from the test patch is a mixture of chromaticities
from yellow punctate and blue diffuse sources. As the test
patch rotates away from a yellow punctate source the inten-
sity of the light reflected from this source decreases with the
cosine of the angle between test patch normal and light
direction; consequently the relative blue content of the test
patch increases.

The minima in the KB-curves depend on the directions
of the yellow punctate light sources (uT = u1 or uT = u2)
and the resolution of the subspace model as described next.
160�-condition. The directional resolution of the 4D sub-
space of E(h,u) is limited to represent one maximum of
intensity (e.g. one punctate light). A visual system dis-
counting illumination only up to this subspace cannot
resolve the two punctate sources 160� apart. In this case
4D-KB (4D blue-chromaticity function) has a single mini-
mum at 0� (Fig. 7, right plot), which does not correspond
to the direction of either punctate source.

The above can be contrasted with the ‘successful’ predic-
tions of the 9D subspace model. The directional resolution
of this subspace is sufficient for 9D-KB (9D-blue-chroma-
ticity function) to have two’correct’ minima, each roughly
corresponding to the yellow punctate source locations at
u1 = 80�, u2 = �80�.

It should be noted that if the visual system discounted
an altogether different illumination setup, namely a single
blue punctate source located near u = 0� and a yellow dif-
fuse source, then the resulting 4D-KB would crudely
approximate the shape of 9D-KB with an illumination
setup consisting of two yellow punctate sources and a blue

diffuse source (as described previously). In the results
section below we will test the possibility that observers’
discounting may be consistent with this alternative effec-
tive illumination setup. 90�-condition. We included the
90�-condition in order to assess observers’ discounting
behavior across different light conditions, i.e. to exclude
the possibility that they adopt one particular strategy
independent of the specific illumination setup. In this con-
dition, predictions of KB for 4D and 9D light field models
agree, forming one effective maximum of intensity near 0�
(Fig. 7, left plot). Neither light field model can resolve
two punctate sources which are 90� apart,7 however, this
is not in contradiction with the response of a Lambertian
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surface to the 90� lighting setup. The punctate sources are
too close to each other to be resolved by the Lambertian
kernel.

3.3. Relative blue

To assess the B-component of an observer’s achromatic
setting we can rewrite Eq. (6) with re-parameterization as

KB ¼ xpB þ dBD
xþ D

; ð7Þ

We refer to KB as the observer’s geometric b-chromaticity
function. pB, dB, and D are defined as described above,
and x ¼

PN
n¼0

Pm
n¼�mbnenmY nm, where bn is a scalar that is

tied directly to the nth order coefficient of the harmonic
expansion of the Lambertian kernel (Basri & Jacobs,
2003); b0 = 3.14, b1 = 2.09 and b2 = 0.79 remain constant.
enm are the lighting coefficients of the spherical harmonic
expansion of the punctate sources (see Appendix C). Since
we assume separability of light fields (Appendix A), above
derivations can be made analogously for KR and KG.

An observer’s visual system can compute what the
b-chromaticity of an achromatic surface should be if esti-
mates of the parameters in Eq. (7) are available. We will
denote them as p̂B; d̂B; D̂, and x̂. Then Eq. (7) becomes

K̂B ¼ x̂p̂B þ d̂BD̂

x̂þ D̂
; ð8Þ

When obtaining estimates of these parameters from an ob-
server’s data we impose the restriction that the punctate
sources are placed symmetrically over the line of sight of
the observer, and never change elevation (h1,2 = 65� re-
mains constant). With those restrictions in place, when
determining x̂ from observers’ data we only need to esti-
mate ê11 when N = 1 (e00 = .5642, and e1,0, e1,�1 = 0 remain
constant), and similarly when N = 2 only ê11 and ê22 need
to be estimated (e00 = .5642, e20 = �.6308, and e1,0, e1,�1,
e2,�1, e2,�2 = 0 remain constant).

It is possible that observers use erroneous estimates of
the parameters in Eq. (8) to arrive at the achromatic point.
We refer to incorrectly estimated but consistently used
parameters of the lighting model as Equivalent Illumina-
tion Models (EIM) following Brainard (1998) who used
the term equivalent illuminant (also see Boyaci et al.,
2003; Bloj et al., 2004).

As noted before, the chromaticities of the lights in this
experiment vary only in the blue–yellow direction, hence
K̂B is the dependent variable of primary interest to us.

3.4. Maximum likelihood estimation and hypothesis testing

We use a maximum likelihood fitting procedure to esti-
mate values of the lighting model parameters
(p̂R; d̂R,p̂G; d̂G,p̂B; d̂B, D̂,̂e11, ê22

8 and r̂ the observer’s esti-
8 ê22 is explicitly estimated only in 9D model fits.
mated standard deviation) that best accounted for each
observer’s data separately. Likelihoods were obtained by
fitting relative red, blue and green data simultaneously.
Table 1 shows results of estimated parameters for all
observers.

For all fitting procedures we imposed the following
restriction on the estimation algorithm: u2 = �u1, assum-
ing that the two punctate sources will always be perceived
to be placed symmetric over the line of sight of the obser-
ver. This was a reasonable assumption to make, as obser-
ver’s raw data did not exhibit any asymmetry. As
mentioned above, hi was assigned its true value, since it
was never varied in the experiment and was neither directly
nor indirectly assessed.

3.5. Testing the 4D subspace conjecture

Each observer’s achromatic setting data (160�-condi-
tion) were fit twice, with the light field approximated with
a 4D or 9D spherical harmonic subspace. The likelihoods
of both fits were compared by means of a nested hypothesis
test (Mood, Graybill, & Boes, 1974, p. 440), the null
hypothesis being that observer’s data would be fit equally
well by both models.

We nested the hypothesis that ê22 ¼ 0 (4D subspace
approximation) within a model in which ê22 was free
to vary (9D subspace approximation). The log likeli-
hood of the constrained model k0 (4D) must be less
than or equal to that of the unconstrained model k1

(9D). Under the null hypothesis, twice the difference in
log likelihoods is asymptotically distributed as a v2

1 var-
iable, with degrees of freedom equal to the difference of
freely varying parameters of unconstrained and con-
strained model.

The hypothesis that the 4D and 9D model fits are
equally likely given the data was rejected for all observers
(160�-condition, v2

1 P19.6, p < .0001). Fig. 8 shows observ-
ers’ data overlaid with their estimated b-chromaticity func-
tion for both, 4D and 9D model fits.

The 4D model fit in Fig. 8 is a concave-down curve,
which is different from the predicted concave-up curve
in Fig. 7 (160�-condition). How can this discrepancy be
explained? Above it was noted that it may be possible
that if observers discounted a light field consisting of a
single blue punctate source, located near u = 0� and a yel-

low diffuse source then the 4D subspace approximation
would have the maximum in KB at u = 0�. While in
Fig. 7 the 4D ideal curve was computed with ‘true’ light
source chromaticities (pB = 0, dB = 1) we observe a rever-
sal in the estimated chromaticities of punctate and diffuse
source in the 4D model fits to the data (p̂B > d̂BÞ consis-
tent with a blue punctate and a yellow diffuse source.
Table 2 shows estimates of p̂B; d̂B for the 4D and 9D
model fits for all observers. Since the 4D light field model
was rejected to account for observers’ discounting behav-
ior, the possibility that observers discount an erroneous
light field consisting of a blue punctate and yellow diffuse



Table 1
Lighting model parameter estimates for 9D model fits

Veridical max(LP(h,u)) from ê11; ê22 D̂ p̂R d̂R p̂G d̂G p̂B d̂B

±80� 0.245 0.5 0 0.5 0 0 1

160�
AS (±86.7� 0.197) p = .91 (0.48 0.14 0.30 0.28 0.2 0.59)*

MS (±89.5� 0.204) p = .02 (0.39 0.24 0.34 0.36 0.26 0.39)*

SHK (±87.4� 0.267) p = .17 (0.45 0.4 0.30 0.24 0.36 0.45)*

IB (±87.7� 0.160)* (0.37 0.34 0.3 0.28 0.34 0.38)*

Veridical ±0� 0.245 0.5 0 0.5 0 0 1

90�
AS (±0� 0.237) p = .45 (0.62 0.00 0.30 0.35 0.06 0.68)*

MS (±0� 0.279) p = .39 (0.47 0.43 0.35 0.13 0.18 0.42)*

SHK (±0� 0.247) p = .99 (0.58 0.2 0.24 0.35 0.18 0.42)*

IB (±0� 0.220) p = .99 (0.4 0.52 0.36 0.20 0.24 0.23)*

Note: Values are obtained from combined maximum likelihood fits (geometric r-, g- and b-chromaticity functions) to the data. We tested the hypotheses
that observers’ estimates of lighting model chromaticities were equal to the veridical values. With a Bonferroni correction for 36 tests (4 observers, 9
parameters) the significant level corresponding to an overall Type I Error rate of 0.05 is 0.00139. All observers’ lighting model chromaticity estimates were
significantly different from the true chromaticities (v2

6 P 94:7; p < .0001). Note there are two possible ways of interpreting these results, either in terms of
misestimating the chromaticity of the illumination or in terms of misestimating the surface color of the test patch. In this experiment we cannot distinguish
between these two possibilities. The deviations of the chromaticity parameters from veridical do not affect our main finding.
Estimates of punctate source azimuth ui shown in column two were obtained by finding the maxima in the approximation of
LP ðh;uÞ ¼

P2
n¼0

Pn
m¼�nenmY nmðh;uÞ for h = 65� (see Appendix B), using estimates of the lighting coefficients ê11; ê22. Except for IB (v2

3 ¼ 11:3; p < .0001)
all observers’ estimates of the directional lighting model parameters (̂e11; ê22, and D̂ combined) were not significantly different from the veridical values.

Fig. 8. Data and fits for relative blue, 9D vs 4D lighting model expansion, 160�-condition. We plot KB as a function of test patch orientation uT. The
figure shows observers’ data (diamond symbols, error bars are ±2SE of the mean, which corresponds approximately to the 95% confidence interval). The
figure illustrates clearly that the data is fit better when an observer’s EIM is approximated with a 9D spherical harmonic subspace (solid line) than with a
4D harmonic subspace (dashed line), indicating that the visual system can resolve at least directional variation in the illumination up to a 9D subspace. All
fits are obtained by means of maximum likelihood estimation as described in the text.
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Table 2
p̂B and d̂B in 9D and 4D model fits

9D 4D

p̂B d̂B p̂B d̂B

160�
AS .17 .68 .38 .01
MS .26 .39 .43 .03
SHK .27 .36 .48 .02
IB .34 .38 .52 .02

Note: Contrasted are b-chromaticities of punctate p̂B and diffuse d̂B

sources as obtained from 9D and 4D model fits. The 4D fit suggests a
single blue punctate source at ui = 0�. However, the 4D model does not
account for observers’ data (see Fig. 8).
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source has been rejected implicitly. We furthermore veri-
fied this finding by comparing likelihoods of the fits where
light sources were modeled with their full spatial fre-
quency spectrum (p < .0001).
3.6. Comparing discounting strategies across conditions

The 90�-condition was included to check whether
observers adopted a single discounting strategy regardless
of illumination condition. Employing the 9D light field
model we nested the hypothesis that observers’ parameters
Fig. 9. Data and fits for relative blue 90�-condition. Symbols and SE are define
that the 4D and 9D curve fits for this condition are virtually indistinguishabl
in the 90�-condition were equal to those estimated from the
160�-condition, allowing only r̂ and D̂ to vary freely, within
a model in which all parameters (̂e11; ê22, p̂R; d̂R, p̂G; d̂G,
p̂B; d̂B, D̂, r̂Þ were free to vary. The hypothesis was rejected
for all observers (v2

8 P 83:4, p < .0001). Fig. 9 shows achro-
matic settings and model fits for all observers in the 90�-
condition.

As predicted we found no significant difference between
the 4D and 9D model fits in this condition (90�-condition,
v2

1 6 1:3, p > .11).

4. Discussion

Given previous results in matte surface color estima-
tion (such as Boyaci et al., 2003, 2004, 2006; Ripamon-
ti et al., 2004; Maloney et al., 2005; also te Pas &
Pont, 2006) where the light field had only one maxi-
mum of intensity we proposed a conjecture that the
visual system discounts directional variation in the illu-
mination only up to a 4D spherical harmonic subspace.
Data from the present experiment where the light field
had two distinct maxima of intensity allowed us to
reject this 4D subspace conjecture showing that
the visual system discounts directional variation in the
light field outside the 4D spherical harmonic subspace
(Table 1).
d as in Fig. 9. KB is plotted as a function of test patch orientation uT. Note
e.
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We tested two illumination conditions 90� and 160� to
probe whether observers discount the given lighting
geometry. As detailed above (also see Fig. 7) the mini-
mum of the geometric b-chromaticity function is a rough
indicator of the punctate source azimuth (or the location
of the effective maximum of light source intensity). If
observers discounted the lighting geometry in each case
(90� and 160�) approximately correct, we expected to find
a shift in the minimum of the observer’s geometric
b-chromaticity function, from near 0� (in the 90� condi-
tion) to approximately ±80� (in the 160� condition). This
is what we found (Table 1).

While it is certainly possible to choose an alternative
light field model and to parameterize the illumination in
our scenes as, for example, a function of numbers of
punctate sources, their intensities and directions, we
would like to emphasize that doing the modeling and
analysis in the frequency domain directly shows the rel-
evance of our results to the theoretical findings by Basri
and Jacobs (2001) and Ramamoorthi and Hanrahan
(2001) which is a key contribution that this study
makes.

4.1. High-frequency directional variation in the illumination

If we want to assess the role of higher spatial frequen-
cies in the light field (beyond the 9D spherical harmonics
subspace) we need to study a visual task whose successful
completion would directly depend on those light field
components: for example the assessment of surface spec-
ularity. Fig. 1 illustrates this dependency: the mirror
sphere reflecting a blurry environment map appeared to
be made from a rather different, rougher, material than
a mirror. Theoretically, a rough(er) sphere reflecting the
un-blurred environment map and a mirror sphere reflect-
ing the blurred version will result in identical images. In
fact, it would be impossible for the visual system to dis-
entangle material property (in this case specular blur)
from the spatial structure of the light field (Adelson,
2001; te Pas & Pont, 2005; Pont & te Pas, 2006)—if no
disambiguating context (e.g. here the image background
which indicates which environment map served as illumi-
nation) is provided. Recently, researchers (e.g. Pont & te
Pas, 2006; te Pas & Pont, 2005, 2006; Khang, Koender-
ink, & Kappers, 2006) have begun to systematically
investigate how shape, material and spatial properties
of the light field interact.

4.2. Non-Lambertian surfaces

In this article we developed an experimental test of a
hypothesis concerning the visual system’s ability to dis-
count spatially complex illumination in estimating the
surface color of Lambertian surfaces. We emphasize that
the theory and experiments made use of physical con-
straints on how light interacts with Lambertian surfaces,
therefore we cannot generalize our results to materials
with other kinds of BRDF’s, for example specular
surfaces.

4.3. Naturally occurring light fields

The light fields used in this experiment were artificial
and carefully chosen to test the 4D subspace conjecture.
However, one advantage of framing the experimental
question in the frequency domain as we do is that the
4D and 9D components of any light field are always well
defined.

4.4. Estimating the equivalent illumination model (EIM)

In the present study we developed an EIM which pre-
dicts observers’ performance with ideal knowledge about
the physical parameters in the scene. Deviations from
ideal performance can be meaningfully explained by
observers’ mis-estimation of EIM parameters. How is
the EIM formed? Boyaci et al. (2006) examined what
sources of information the visual system uses to estimate
the location of neutral punctate light sources and their
relative intensities in a scene. They refer to these infor-
mation sources as ‘‘cues to the lighting model’’. Examin-
ing three potential cues—specular highlights, cast
shadows and shading of matte surfaces—each individu-
ally and all three combined, they find that observers
can use each of the cues in isolation when estimating
albedo of a matte test patch embedded in the scene,
and that observers combine multiple available cues into
an estimate that is more reliable than any of the cues
in isolation (effective cue combination, Boyaci et al.,
2006; see also Oruç, Maloney, & Landy, 2003). The
scenes employed in this experiment provided the observer
with a rich lighting model cue environment, and we
believe that the data in our experiment can be explained
parsimoniously by employing the EIM. In general, we do
not claim that the parameterization of the illumination
we have chosen is the one used by the visual system, only
that whatever parameterization the visual system uses is
captured by the EIM parameters which we estimated in
this experiment. In that sense we simply describe human
performance and possible implementations of computa-
tional models of that performance (Marr, 1982).

Alternatively, one may like to reject the notion of the
EIM in favor of explanations based on specific heuristic
strategies. For example observers could simply make use
of a cue based exclusively on shading, then their perfor-
mance is consistent with the EIM and, if the visual sys-
tem assigns a high weight to the shading cue in these
scenes, their performance as predicted by the EIM
would closely resemble that predicted by this heuristic.
There is no inconsistency between the claim that the
visual system builds an EIM and uses it in estimating
surface color and the claim that its operation can be
summarized as the coordinated activity of a small num-
ber of heuristic algorithms. We do note that the visual
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system must make use of heuristics other than the one
just described since it can partially discount changes in
effective illumination due to changes in surface orienta-
tion even when surface shading cues are not present in
scenes (Boyaci et al., 2006) or when surfaces with iden-
tical orientations are assigned different lightnesses by
observers (Snyder et al., 2005).

In interpreting the outcome of our experiment we are
assuming that observers are in fact adjusting the test
patch so that it appears achromatic on each trial. We
can also consider the possibility that observers are not,
in fact, making achromatic settings but instead simply
copying the chromaticities of matte surfaces at similar
orientations in the scene. When observers complete a
trial using the copying heuristic, the test surface need
not appear achromatic; the observer has deliberately
failed to carry out the achromatic setting task as
instructed. We reject this possibility for the following rea-
sons. First, the observers were not aware of the hypoth-
esis under test. It is difficult to see how observers would
fail to carry out the task correctly or why they would
have any motive to deviate from the instructions given
them. Second, after the experiment, we explicitly asked
observers what ‘strategies’ they had used to make their
settings. None reported to have used the available matte
(or other specific) objects in the scenes as references. In
fact, some observers reported that they had tried to
ignore the scene altogether when making their achro-
matic settings. Third, we (the experimenters) experience
these effects and are in a position to critically evaluate
whether our settings are achromatic. For these reasons,
we believe that observers are not employing conscious
strategies that lead to settings inconsistent with the
instructions they have been given.
4.5. The 9D conjecture

Our results demonstrate that, under our experimental
conditions, the human visual system is able to discount
the directional variation in the local light field beyond
what can be captured by a 4D spherical harmonic sub-
space. We can say a bit more. Let H denote the set of
light fields for which the visual system can compensate
and P2H the components of these light fields projected
into the 9D subspace. Then we can state our conclusions
as P2H is not contained in the 4D subspace. But what
can we say about the stronger claim that P2H is precisely
the 9D subspace? We refer to this claim as the ‘‘9D
conjecture’’.

We have not established this stronger claim. However,
we end by stating necessary and sufficient conditions that
it be true. If P2H is (1) rotationally invariant and (2) closed
under superposition of light fields, then P2H is precisely the
9D subspace. This claim is easily shown: subspaces are
closed under superposition and the only rotationally-
invariant subspace within the 9D subspace that contains
more than the 4D subspace is the 9D subspace itself (Mac-
Robert & Sneddon, 1967).

The requirement of rotational invariance is effectively
the requirement that rotations of the entire scene or, equiv-
alently, changes in the viewpoint of the observer, do not
affect performance. We emphasize that this is an empirical
question.

Closure under superposition implies that if the visual
system can compensate for each of two light fields, it can
compensate for their superposition. Some of the alternative
models considered above would not be closed under super-
position—e.g. the superposition of light fields based on
lighting models that can represent up to two punctate
sources and a diffuse could have as many as four punctate
sources. Of course, the components of these scenes in the
9D subspace, however, sum to another light field in the
9D subspace.

We are left with following conclusions. P2H is not
included in the 4D subspace. If P2H is not identical to
the 9D subspace then it must fail either rotation invariance
or superposition. If it is coextensive with the 9D subspace,
then the visual system has evolved to compensate for all of
the complexity in the light field that affects the appearance
of Lambertian surfaces.
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Appendix A. Separable light fields and the special tri-

stimulus case

We consider the special case where the light field is
separable in direction (h,u) and wavelength k: Ep(h,u,k) =
Ep(h,u)G(k). This would be the case in scenes where all
light sources have the same relative spectral power distribu-
tion (that is, a monochrome world) and all surfaces and
other physical media that could affect the spectral power
distribution of light are spectrally unselective (hence, the
spectrum of light never changes when being absorbed and
re-emitted by the surfaces). We refer to Ep(h,u) as the spa-

tial component of the light field and G(k) as the spectral

component.
Next, we expand the space of possible light fields to

those that can be represented by the weighted sum of
three light primaries (‘guns’, such as those of a CRT
monitor),



Fig. 10. 4D and 9D harmonic expansion of LP. Illustrated is the expansion of LP for one channel coding channel activity on a black-white scale shown
next to each expansion. If P1 and P2 are placed sufficiently far from each other, as in the 160�-condition in the 9D expansion of LP will have two maxima of
intensity. Conversely, if P1 and P2 are located closer together, as in the 90�-condition, 4D and 9D spherical harmonic expansion of LP will both have only
one maximum of intensity.
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Eðh;u; kÞ ¼
X3

k¼1

Ekðh;uÞGkðkÞ: ð9Þ

For any tri-stimulus light field we can expand each of
the light fields Ek(h,u),k = 1,2,3 separately as a spherical
harmonic series and examine its low-pass components with
respect to either the 4D or 9D subspace,

PN Eðh;u; kÞ ¼
X3

k¼1

PN Ekðh;uÞGkðkÞ; N ¼ 1; 2: ð10Þ

The light field components Ek(h,u),k = 1,2,3 correspond-
ing to the different ‘guns’. PN Ekðh;uÞ; k ¼ 1; 2; 3 need
not be the same. We will use the symbols, R, G, B as
synonyms for the values k = 1,2,3, respectively. Thus
EB(h,u) is a synonym for E3(h,u), GB(k), a synonym for
G3(k), etc.

Appendix B. The low-pass Lambertian kernel

The light received and re-emitted by a Lambertian sur-
face can be written as R(h 0,u 0)a(k)G(k) where a(k) is the
surface reflectance function and

Rðh0;u0Þ ¼
Z Z

Eðh;uÞhUðh;uÞ;Uðh0;u0Þidudh; ð11Þ

where hU(h,u),U(h 0,u 0)i is the inner product of the unit
surface normal vector U(h 0,u 0) and the unit vector
U(h,u) indicating the direction of a ‘light ray’. We refer
to R(h 0,u 0) as the directional component of the Lambertian

response function. Given the linearity of the integral in Eq.
(4) and the low-pass filtering property of the Lambertian
surfaces as shown by Basri and Jacobs, if E(h,u) is replaced
by P2Eðh;uÞ then the response function of the Lambertian
surface

Rðh0;u0Þ � P2Rðh0;u0Þ; ð12Þ
is (almost) unaffected.
Appendix C. Spherical harmonic expansion of the lighting

model

The light field in our experiment consisted of two yellow

punctate light sources (90� or 160� apart) and a blue diffuse
(directionally uniform) light source.

The diffuse light (we denote it LD(h,u) = c, where c is a
constant) can be expanded using Eq. (1). With uniform
lighting the lighting coefficients (see Eq. (2)) simply become

eB
Dnm ¼ c

Z p

h¼0

Z 2p

u¼0

Y nmðh;uÞ sin hdhdu

¼ c
ffiffiffiffiffiffi
4p
p

dn0dm0; ð13Þ

using the orthonormality property of spherical harmonics
(for an overview of the properties of spherical harmonics
see MacRobert & Sneddon, 1967; Arfken, 1985a, 1985b;
or Byerly, 1959). Consequently the expansion of LD is a
constant, namely c.

The punctate sources are the sole source of directional
heterogeneity in our particular illumination setup. To sim-
plify the harmonic expansion, we will treat each punctate
source as a delta function that has a nonzero value only
at location (h1,u1) and (h2,u2), respectively. We write the
expansion of the punctate sources

LP ðh;uÞ ¼
X1
n¼0

Xn

m¼�n

ePnmY nmðh;uÞ ð14Þ

where

ePnm ¼
Z p

h¼0

Z 2p

u¼0

LP ðh;uÞY nmðh;uÞ sin hdhdu: ð15Þ

As mentioned above, LP consists of two delta functions at
d (h1,u2) and d(h2,u2). Because light fields combine linearly
we can write ePnm ¼ eP 1nm þ eP 2nm. Using
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Z p

h¼0

Z 2p

u¼0

dðh0;u0ÞY nmðh;uÞ sin hdudh

¼ Y nmðh0;u0Þ sin h0 ð16Þ

(see Basri & Jacobs, 2003) we get

eP 1nm ¼ Y nmðh1;u1Þ sin h1; ð17Þ
eP 2nm ¼ Y nmðh2;u2Þ sin h2:

Consequently, ePnm = Ynm(h1, u1)sin h1 + Ynm(h2, u2)sinh2.
Fig. 10 shows the 4D and 9D expansion of LP for each illu-
mination condition. For the remainder we refer to the
lighting coefficients of the punctate source expansion ePnm

simply as enm.
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