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We investigate how human observers make use of three candidate cues in their lightness judgments. Each cue potentially
provides information about the spatial distribution of light sources in complex, rendered 3D scenes. The illumination (lighting
model) of each scene consisted of a punctate light source combined with a diffuse light source. The cues were (1) cast
shadows, (2) surface shading, and (3) specular highlights. Observers were asked to judge the albedo of a matte grayscale
test patch that varied in orientation with respect to the punctate light source.We tested their performance in scenes containing
only one type of cue and in scenes where all three cue types were present. From the results, we deduced how accurately they
had estimated the spatial distribution of light sources in each scene given the cues available. In Experiment 1, we established
that all of the individual cues were used in isolation. We showed that the highlight and cast shadow cues in isolation were
used by more than half of the observers. We could reject the hypothesis that the observers did not make use of the shading
cue for only one observer. In Experiment 2, we showed that the observers combined information from multiple cues when
all three cues were presented together.
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Introduction

In everyday scenes, the light that reaches the eye from a
matte surface patch depends on many factors. These include
the surface properties of the patch and also the lighting
model (the spatial distribution of light sources in the scene).
When the spatial distribution of the light sources is not uni-
form, the light reflected by a matte surface can also depend
on its orientation (Figure 1).
Boyaci, Maloney, and Hersh (2003) and Ripamonti et al.

(2004) demonstrated that human observers can take the
spatial distribution of light sources into account in their
lightness estimates, suggesting that the visual system de-
velops an estimate of some aspects of the lighting model.
As early as the study of von Helmholtz (1866/1924), re-
searchers considered how the lightness or color of a surface
could be estimated by first inferring the lighting model
from the cues present in the scene. Typically, however,
these discussions centered on estimation of the chroma-
ticity of a single light source illuminating the scene, and
there is no previous study demonstrating that, in arriving at
a lightness estimate, the visual system uses any specific cue
for estimating the spatial variation of light falling on the
test surface from all directions. In this article, we examine
three candidate cues that may affect the observers’ light-
ness estimates.

Evidence that human observers develop
an estimate of the lighting model

Boyaci et al. (2003) studied how changes in test patch
orientation affected perception of the albedo of achromatic
surfaces in rendered scenes. The lighting model used in ren-
dering the scenes consisted of a punctate source and a dif-
fuse source, both neutral in chromaticity. The punctate source
was placed behind the observers and was not directly visi-
ble to them. Boyaci et al. varied test patch orientation from
trial to trial to examine how changes in orientation affected
the observers’ perception of the surface albedo of the test
patch. They found that the observers partially discounted
the effect of changing orientation in judging surface albedo.
Ripamonti et al. (2004) repeated this experiment using ac-
tual surfaces and lights with the same outcome (see also
Bloj et al., 2004).
Boyaci, Doerschner, and Maloney (2004) examined the

observers’ performance in an achromatic setting task with
a lighting model consisting of a yellow punctate source
and a diffuse blue source. They found that the observers
partially discounted the effect of changing orientation in
judging surface color. For each of the experiments just de-
scribed, it was possible to estimate the perceived location
of the punctate light source directly from the observers’
responses.
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The combined results described above imply that the ob-
server’s visual system effectively develops an estimate of
the spatial and spectral distribution of parts of the lighting
model that are not directly visible. We refer to this estimate
as the observer’s Equivalent Lighting Model (ELM).
Boyaci et al. (2003) proposed that the observers go about

the task of estimating the surface albedo of an achromatic
surface in two stages (Figure 2). First, they estimate the
parameters of the lighting model: the total light intensity ÊE;
the direction to the punctate light source ĜP = (=̂P , 8̂P) (azi-
muth and elevation), and the ratio of the punctate light to
total light :̂: illuminating the scene. The resulting ELM is
denoted as M̂M ¼ ½ÊE; ĜGP; :̂:�. Observers also estimate the sur-
face orientation ĜGT of the test surface. In Stage 2, they
estimate surface albedo, !̂!; by computing a geometric cor-
rection factor (explained below) based on ĜGT and the pos-
sibly erroneous estimates of the ELM from Stage 1. Note
that the perceived luminance, L̂L; is assumed to be readily
available to the visual system.

Cues to the lighting model

The primary question we address here is, what sources
of information in the scene does the visual system use to
develop an estimate of ELM?
Specifically, we examine what sources of information the

visual system uses to estimate the location of neutral punctate
light sources and their relative intensities in a scene. We refer
to these sources as Bcues to the lighting model,[ and in this
article we will be concerned with the cues to the location of
the punctate light source and the punctate-total ratio in the
lightness matching task of Boyaci et al. (2003).
There are three candidate cues that we will consider (see

Figures 4 and 8): cast shadows, surface shading (attached

shadows), and the virtual image formed in the surface of a
specular object. We refer to this last cue as Bspecular high-
lights[ or Bhighlights.[ These three cues were always pre-
sent in the scenes used by Boyaci et al. (2003, 2004) and
two of the cues were present in the scenes of Ripamonti
et al. (2004; there were no specular objects). Here we wish
to determine, primarily, which of the three serve as cues
in estimating GP and :. If we find that multiple cues are
utilized by the visual system in a scene, we wish to test
whether the visual system combines them to arrive at less
variable estimates of the parameters of the lighting model
(Ernst & Banks, 2002; Landy, Maloney, Johnston, & Young,
1995; Oru0, Maloney, & Landy, 2003).
Two previous studies have examined how the visual sys-

tem uses cues present in the scenes to arrive at estimates of
the chromaticity of the illuminant (Kraft & Brainard, 1999;
Yang & Maloney, 2001; see also Maloney, 2002). Snyder,
Doerschner, and Maloney (2005) showed that inclusion of
glossy spherical objects improved the observers’ lightness
constancy in computer-rendered 3D scenes. Koenderink,
van Doorn, and Pont (2004) studied how human observers
estimate light source direction in simple scenes using infor-
mation from cast shadows and shading. Gilchrist (1977,
1980) demonstrated that errors in estimating the lighting
model could result in large errors in estimating albedo and
Gilchrist et al. (1999) review possible heuristics for esti-
mating lighting models in simple scenes.
Similar problems are considered in computer vision and

the computer graphics literature. Hara, Nishino, and Ikeuchi
(2005) developed computer algorithms using specular high-
lights and shading of matte surfaces to estimate the light
source position. Wang and Samaras (2003) were able to

Figure 1. Orientation changes and Lambert’s law. Lambert’s law

(Haralick & Shapiro, 1993) is a mathematical description of absorp-

tion and emission of light by an idealized achromatic matte surface.

Identical square surfaces with different orientations and locations

were rendered with a distant punctate light source placed along the

line of sight, perpendicular to the figure. It is easy to see the large

differences in emitted luminance with changes in orientation.

Figure 2. A two-stage model of albedo estimation in human vision.

The visual system combines estimates of the lighting model and test

surface orientation to compute the geometric correction function for

a particular scene. Errors in these estimates will lead to patterned

errors in perception of albedo.
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estimate lighting model using cast shadows and shading
first independently and then by integrating the two re-
sults. Li, Lin, Lu, and Shum (2003) developed an algo-
rithm that could determine distribution of multiple light
sources by integrating information from shading, shad-
ows, and specular reflections.

Experiment 1

Methods

Stimuli

The stimuli were computer-rendered, three-dimensional
scenes composed of simple geometrical objects such as
spheres and cubes with different colors and reflectance
properties. These objects were intended to serve as can-
didate cues to provide information about the lighting
model. Each scene was rendered twice with slightly dif-
ferent viewpoints corresponding to the positions of the ob-
servers’ eyes. A sample stereo pair is shown in Figure 3.
The scenes were illuminated by a mixture of diffuse and

punctate light sources. A gray matte (Lambertian) test patch
was placed near the center of the scene whose orientation
and luminance varied from trial to trial as explained below.
The scenes differed in the kinds of cues they contained.

There were a total of four cue conditions. In the cast
shadow condition, all objects but the flat1 matte poles and
floor were removed (Figure 4A). In the shading condition,
everything except the Lambertian cubic objects was removed
(Figure 4B). In the highlights condition only the glossy
spheres were present (Figure 4C). In the all cues condition,
we presented the scene with all cues available (Figure 4D).

Software and apparatus

The experimental code was written by us in the C lan-
guage using the X Window System, Version 11R6 (Scheifler
& Gettys, 1996). The scenes were rendered by the open
source physics-based rendering package Radiance (Larson
& Shakespeare, 1996). The Radiance output for each im-
age consisted of floating point triplets for each pixel.
These triplets were interpreted as the relative retinal il-
lumination if the observers’ eyes were at the viewpoints
selected in the virtual scene. We translated these relative lu-
minance values into 24-bit graphics codes after correcting
them for nonlinearities in the monitor responses by means
of measured look-up tables.
The rendered images were presented to the observers

binocularly in a stereoscope, on two 21-in. Sony Trinitron
Multiscan GDM-F500 monitors, both having a highest
luminance of 115 cd/m2. The computer used in the exper-
imental apparatus was a Dell Workstation with an Nvidia

Figure 3. Sample stereo pair. The left pair is for uncrossed fusion, the right pair is for crossed fusion.

Figure 4. Cue conditions.We consider three cues that potentially could be used to estimate the lightingmodel in the scene: cast shadows, shad-

ing of matte surfaces, and specular highlights. (A) Cast shadows condition. (B) Shading condition. (C) Highlights condition. (D) All cues condition.
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dual-head graphics card that controlled both monitors.
The experimental program ran under Fedora Core Linux,
Version 3 (for details, see Boyaci et al., 2003).

Test patch

The test patch was placed near the center of the scene,
70 cm away from the observers’ viewpoint. The same dis-
tance of 70 cm was also the physical distance from the
observer’s eyes to the computer screens. The test patch
could appear at any one of the five different orientations
specified by the azimuth =T of the normal to the test patch
surface (elevation 8T = 0 remained constant). The values
=T could take on were j60, j45, 0, 45, and 60 deg. The
luminance of each test patch was kept constant indepen-
dent of its orientation. Four different luminance values were
interleaved randomly to avoid possible artifacts. These lumi-
nance values were 0.44, 0.50, 0.56, and 0.61 proportion of
the maximum possible luminance for the computer monitors
(115 cd/m2).

Light sources

The scenes were illuminated by a neutral punctate and a
neutral diffuse light source. The punctate source was placed
directly above and behind the observer’s head.2 The dis-
tance between the test patch and the punctate source was
670 cm (580 cm front, 335 cm above). The actual direction
to the punctate source was GP = (=P, 8P) = (0, 30 deg).
The position of the punctate source was never varied dur-
ing the experiment and its location was sufficiently far
from the test patch so that it could be treated as a colli-
mated source across the extent of the test patch. The
actual punctate-total light ratio was : = 0.67.

Task

The task of the observer was to indicate the lightness of
the test patch by choosing a matching chip among a ran-
domly ordered scale of chips presented near the right edge
of the screen. The exact phrase used was Bchoose the
matching chip which looks like it is cut out of the same
piece of gray paper as the test patch.[ The scale was pre-
sented monocularly, to the right eye, and its ordering was
changed randomly at each trial. The luminance values of
the chips were 0.11, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75,
0.85, and 0.97 proportion of maximum luminance of the
monitors (115 cd/m2).

Procedure

Observers repeated each of 80 conditions 10 times (4 cue
conditions, 4 luminances, 5 orientations). Between each
trial, a uniform gray mask covering the entire image area
was presented for 1 s. Different cue conditions were blocked
in different sessions. Observers were allowed to perform

a few trials before the actual experiment started. There
were no time constraints. Each session took about half an
hour to complete on the average.

Observers

Six observers completed the experiment. All were un-
dergraduate students in New York University who were
unaware of the purpose of the experiment.

Analysis and results

Parameters of the ELM

What would a lightness constant observer do and what
are his or her possible errors? The albedo of a Lambertian
surface under the lighting model M = [E, GP, :] is given
by

! ¼ L

E
*M GTð Þ; ð1Þ

where L is its luminance and *M (GT) is a geometric cor-
rection function,

*MðGTÞ ¼ ½: cos EðGT ;GPÞ þ ð1j:Þ�j1; ð2Þ

where E(GT , GP) is the angle between the normal to the
surface and direction to the punctate light source. Intui-
tively, the geometric correction function is the amount
that the Bideal albedo observer[ must Bcorrect[ perceived
albedo to compensate for the effect of orientation. Fur-
thermore, cosE is given by

cos EðGT ;GPÞ ¼ cos 8P cosð=Tj=PÞ: ð3Þ

Employing Equation 1, one can show that the ratio of the
luminance of the matching chip and the test patch is given
by the setting ratio

0 ¼ LR

LT
¼ C*M; ð4Þ

when their albedos match. In Equation 4, C character-
izes the combined effect of the unknown absolute total
light E in the scene and the unknown lighting model of
the matching chip (for more details, see Boyaci et al.,
2003).
We can depict any observer’s geometric correction func-

tion as his setting ratios 0 plotted versus =T. If the lightness
constant Lambertian observer’s visual system had perfect
estimates of GP and :, then his or her geometric correction
function should have the same shape as the actual geometric
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function, up to an unknown scaling factor C. Conversely,
given the form of the observer’s geometric correction func-
tion, we can compute the estimates of =̂=P and :̂:; which
accounts best for the data: misestimates of light azimuth,
=P , shift the function to the right or to the left. Misesti-
mates of punctate-total balance, :, change the curvature
of the function (Figure 5). As explained in Appendix B,
all analyses were carried out using a transformation of the
parameter :. We retain : in the text because it is readily
interpreted as the punctate-total ratio defined above.

Results

We present the data of one observer (SRH) in Figure 6.
We plot the average of the setting ratios, 0, for all four
test patches of different luminances at each orientation.
The solid line is the best fit obtained by a maximum like-

lihood estimation analysis. We fit Equation 4 to the ob-
server’s data by the method of maximum likelihood (Mood,
Graybill, & Boes, 1974, pp. 276 ff) under the assumption
that the observer’s settings are perturbed by Gaussian
error with mean 0 and variance A 2.
We tested the null hypothesis that : = 0 versus the

alternative that : m 0 by a nested hypothesis test (Mood
et al., 1974, pp. 440Y442) as follows. We first obtain max-
imum likelihood estimates of the parameters =̂=P; :̂:; ĈC; and
ÂA2 without constraining :̂:. These are estimates of the
parameters with the unconstrained model. We then obtain
estimates of C and ÂA2 under the constraint : = 0 (the null
hypothesis) and without fitting the parameter =P (in the
: = 0 case, the observer’s geometric correction function is
a horizontal line, hence there is no minimum, or in other
words the azimuth of the punctate source is not defined
because there is no punctate source).

Figure 5. The effect of varying the lighting model parameters =P and : on the geometric correction function. (Left) *M versus =T for different

values of =P (with 8T = 8P = 0). The curve in blue corresponds to the case =P = 0 deg. The two dashed curves correspond to the cases =P =

T30 deg. Each curve represents the decrease in emitted luminance as a surface of constant albedo is rotated away from the punctate

source. Changing the elevation 8T of the surface normal leads to a similar set of curves. These are plotted in Boyaci et al. (2004). (Right) *M
versus =T for various values of the punctate-total ratio : (with =P = 0 deg). The minimum of *M is always at =T = =P, the direction to the

light; changing : affects only curvature. The blue, solid curve corresponds to : = 0.67 (the value we use in Experiment 1). The red, dashed

curves correspond to values of : = 0.87 (more curved) and : = 0.2 (less curved). When : = 0, the curve becomes a horizontal line (*M K 1),

a readily interpretable result: if : = 0 then the light is perfectly diffuse and changes in orientation do not affect the intensity of light absorbed

by or emitted by the test surface.

Figure 6. Experiment 1: Results of observer SRH under all four cue conditions. (A) Cast shadows condition, (B) shading condition,

(C) highlights condition, and (D) all cues condition.
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If 1 denotes the ratio of the maximum likelihood
achieved in fitting the unconstrained and the constrained
models, thenj2 log 1 is approximately distributed as a #2

2

distribution under the null hypothesis (Mood et al., 1974,
pp. 440Y442). For a test of size p, we reject the null
hypothesis : = 0 if and only if j2 log 1 is greater than
the 1 j p quantile of the #2

2 distribution.
Figure 7 summarizes the estimates of =̂=P and :̂: of all

observers in each of the four conditions. The estimates for
each observer are plotted in polar coordinates (following
Ripamonti et al., 2004) as blue line segments with one end
at the origin. The angle between the segment and the
horizontal is =̂=P and the distance from the origin is :̂:.
A blue dot marks the end of the line segment. The true
value of =P is marked by a black dotted line segment. The
true value : = 0.67 lies outside the plot.
Observers markedly underestimated the true value : in

all conditions in agreement with the results in previous
experiments with rendered scenes (Boyaci et al., 2003,
2004) and real scenes (Ripamonti et al., 2004). It can be
seen that the estimates of =P cluster around the true value
in all conditions. Observers perceive the direction to the
hidden punctate light source (nearly) accurately but under-
estimate its intensity relative to the diffuse source.
In Table 1, we report the exact p values of the nested hy-

pothesis test described above for each condition and subject.
If, in any one cue condition, the observers made no use of the

cues provided, then these p values would be distributed as
uniform random variables in the unit interval [0,1]. We use
this fact to test the hypothesis that none of the observers is
using a specific cue by computing the logarithm of the geo-
metric mean of the p values (log10p) for that cue across the
six subjects and comparing the result to the distribution of
the geometric mean of six independent uniform (0,1) ran-
dom variables (see Appendix A). We report the p values for
this omnibus test statistic in the last column of Table 1.
These results indicate that at least some of the observers are

making use of each of the individual cues and the combined
cues. Examination of the p values for individual subjects
suggests that one subject (SB) made use of no cues and we
cannot claim that he or she is correcting albedo estimates for
orientation in any of the conditions. It is plausible that some
subjects are making use of at least two of the distinct cues,
which we further examine in the next experiment.

Experiment 2

Methods

Stimuli

The stimuli were computer-rendered 3D scenes similar
to the ones used in Experiment 1. We investigate the same

Figure 7. Experiment 1: Estimates of =P and : plotted in polar coordinates. (A) Cast shadows condition, (B) shading condition, (C) highlights

condition, and (D) all cues condition. The results for each observer are plotted as a blue line segment with one end at the origin. Each line

segment has length : and orientation =P. The true value of =P is plotted as a dashed black line segment. It can be seen that the observers’

estimates =P are close to the true value in all cue conditions. The true value of the punctate-total ratio : is 0.67. It would lie outside each of the

plots (radius corresponds to : = 0.3). Observers markedly underestimated :.

Cue condition

Observers

MS CD SH SRH KP SB Overall

All cues .023 .0002 .002 .000003 .002 .58 G.0001

Cast shadows .006 .0072 .02 .0002 .08 .078 G.0001

Shading .02 .0572 .26 .5 .233 .78 .0495

Highlights .24 .13 .001 .022 .78 .44 .0023

Table 1. Exact p values corresponding to the nested hypothesis test of the null hypothesis : = 0. The last column contains an omnibus

p value corresponding to the hypothesis that no observer made use of the cues available in a given cue condition. Values greater than

.05 are shaded (null hypothesis, : = 0, is not rejected).
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four cue conditions but with two different light positions
as shown in Figure 8.

Software and apparatus

Same as in Experiment 1.

Test patch

Test patches had similar characteristics as in Experi-
ment 1, except their luminances were 0.604, 0.678, 0.752,
and 0.83 proportion of the maximum possible luminance
of the computer monitors (115 cd/m2). They could take on
the same orientations =T = {j60, j45, 0, 45, 60 deg}.

Light sources

The scenes were illuminated by a combination of neutral
punctate and diffuse light sources. The punctate source was
placed above, behind, and either on the left or on the right
of the observer’s head. The distance between the test patch
and the punctate source was 668 cm (409 cm front, 335 cm
above, and 409 cm on the right or on the left). The di-
rection to the punctate source was GP = (EP , 8P) = (T45,
30 deg). The position of the punctate source did not vary
within a block. Punctate-total ratio was : = 0.85.

Task

Same as in Experiment 1.

Procedure

Observers repeated each of 160 conditions 10 times
(2 light positions, 4 cue conditions, 4 luminances, and
5 orientations).

Observers

A total of 20 observers participated in a preliminary test
session and two observers, one naBve (IB) and one of the
authors (KD), completed the entire experiment. We set a
rather restrictive threshold to decide on eligibility: Ob-
servers first ran the two all cues conditions (one in light
on the left condition, other in light on the right condition)
and only those whose lightness estimates showed a very sig-
nificant correction ( p G .0005) against changes in orientation
were chosen (it is worth noting that nearly all 20 ob-
servers corrected their lightness settings for the test patch
orientation in the all cues conditions at p = .05 level). An
analysis of cue combination is more powerful for ob-
servers who correct their lightness estimates more in the
all cues condition. For instance, data from an observer
like SB in Experiment 1 would not be suitable to study
cue combination because that observer did not use any of
the cues. Only subjects who met criterion ran in the re-
maining experimental (single cue) conditions.

Analysis and results

We present the data of observer IB in Figure 9 in a
similar fashion as in Experiment 1. We repeated the same

Figure 8. Experiment 2: Stimuli. The stimuli used in Experiment 2 were similar to those used in Experiment 1, except that there were two

light conditions in Experiment 2. (AYD) Light from the right; (EYH) light from the left.
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statistical analysis described in the Analysis and results
section of Experiment 1. Figure 10 summarizes the esti-
mates of light position and punctate-total ratio (=P, :) for
both observers.
In all conditions (two light, four cue, total of eight), the

null hypothesis that : = 0 (no correction) is rejected except
for IB in the highlights condition under the light from the
right and for KD in the highlights condition under the light
from the right. We conclude that each of the individual
cues and combined cues is used by all observers.
Given that the observers make use of each of the indi-

vidual cues, we next consider whether any of the observers
make use of more than one cue in the all cues condition.

Specifically, do they combine two or more cues to obtain
an estimate of =P and : that is more reliable than the es-
timates based on the cues in isolation?

Are cues combined to produce more
reliable estimates?

Suppose that we have independent biased (or unbiased)
Gaussian estimates from each one of the multiple cues

:̂:i ¨ 6ðB;A2
i Þ i ¼ 1; 2; 3; ð5Þ

Figure 10. Experiment 2: Results, both observers. (A) Observer IB, (B) observer KD. Similar to Figure 7, except all eight conditions (two light posi-

tion, four cue conditions) are plotted in a single plot for each observer. Radius corresponds to : = 0.3. The true value : = 0.85 lies outside the plots.

Figure 9. Experiment 2: Results (observer IB). Same as in Figure 6, except (AYD) light from the right; (EYH) light from the left.
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where we number the three cues in the order of cast shad-
ows, shading, and specular highlight for convenience. The
minimum variance estimate of :̂: when all three cues are
present is the weighted convex combination of each single
cue, which is given by

:̂:0 ¼~
3

i¼1

Wi:̂:i ; Wi ¼ ri=~
3

j¼1

rj; ð6Þ

where ri = Ai
j2 is defined as the reliability of that cue

(terminology due to Backus & Banks, 1999). If the cues
are combined according to Equation 6, then the reliability
of the combined estimate is the sum of individual reli-
abilities r0 ¼ ~

3

i ¼1

ri. We can derive similar equations for
estimates of =P based on multiple cues.
We first want to test whether, in the all cues condition,

observers combined information from multiple (two or
more) cues to produce an estimate that is more reliable than
the estimates based on any one of the cues. That is, we want
to test whether

rall 9 maxfr1; r2; r3g; ð7Þ

where rall denotes the observer’s performance with all cues
present. This condition (see Oru0 et al., 2003) is the mini-
mum condition that an observer’s performance should sat-
isfy if we are to claim that s/he is combining cues effectively
and not, for example, using one cue on some trials and

another on the remainder. We refer to Equation 7 as the
effective cue combination hypothesis. This condition is
strictly weaker than the optimal cue combination hypoth-
esis, which requires rall = r0. We estimated reliabilities for
each observer in each cue condition by bootstrap simula-
tion (Efron & Tibshirani, 1993). The resulting estimates
are given in Table 2 (for :̂:) and Table 3 (for =̂=P).
First, we tested the effective cue combination hy-

pothesis for : and =P estimates. We compared r̂rmax ¼
maxfr̂r1; r̂r2; r̂r3g, the maximum reliability of any of the sin-
gle cues conditions, to the reliability r̂rall of the all cues
present condition (empirical). We computed the z score

z ¼ r̂rmaxjr̂rallffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðr̂rmaxÞ þ varðr̂r

all
Þ

p : ð8Þ

Using the z scores, we tested the hypothesis that r̂rmax and
r̂rall come from the same distribution at the .05 chance level.
We conclude that both observers used at least two cues
because the z scores suggest that the r̂rall estimates lie above
r̂rmax and outside the 95% confidence interval for : esti-
mates. The z scores are shown in Tables 2 and 3.
Next, we computed an estimate of the optimal reliability

r̂r0 as predicted by Equation 6. We compared this estimate
to the reliability, r̂rall, of the all cues condition (empirical) in
a manner similar to our previous analysis. We rejected the
hypothesis of optimal cue combination for both observers
in all conditions except for observer IB in light from the
left condition in case of combining cues for a : estimate.

Cue

condition

Observers

KDVL KDVR IBVL IBVR

All cues 33.8 19.1 53.3 36.1

r̂rmax 25.1 13.4 26.6 31.4

r̂r0VPredicted

optimum

59.3 23.1 57.5 51.1

Cast

shadows

21.7 9.6 12.9 19.7

Shading 25.1 13.4 26.6 31.4

Highlights 12.5 0.02 18 0.02

z score (1) j4.01 j5.10 j8.38 j2.00

z score (2) 10.04 3.30 1.25 6.08

Table 2. Computed and empirical estimates of reliabilities of :̂:;;

after a classical bootstrapping with replacement. We tested

whether the reliability of the estimate in all cues condition is

larger than the best single cue alone (effective cue combination,

r̂all 9 r̂max) and whether equal to the value predicted by the optimal

cue combination rule (r̂all ¼ r̂0) at p = .05 level. The z score (1):

Comparison with best individual cue; z score (2): comparison with

optimal cue combination. The results indicate that the empirical

reliabilities in all cues condition are all larger than the best single

cue alone but lower than predicted by optimum combination rule,

except for IB in the light from the left condition.

Cue condition

Observers

KDVL KDVR IBVL IBVR

All cues .016 .015 .027 .008

r̂rmax .010 .008 .009 .009

r̂r0VPredicted

optimum

.025 .013 .018 .022

Cast shadows .011 .008 .003 .009

Shading .010 .004 .005 .007

Highlights .005 .002 .009 .005

z score (1) j4.90 j8.22 j10.86 2.83

z score (2) 8.56 j2.28 j5.98 19.18

Table 3. Computed and empirical estimates of reliabilities of =̂=.

Same analysis procedure as in Table 2. In all cases, empirical

reliabilities in all cues condition are larger than the best individual

cue but lower than predicted by optimum cue combination rule

at p = .05 level, except in three cases: for observer IB under the

light from the right, the effective cue combination is violated

(r̂all G r̂max), and for observer KD under the light from the right and

for observer IB under the light from the left, the reliability of all

cues condition exceeds the value predicted by the optimum cue

combination.
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In summary, we found that both observers combined cues
effectively but not optimally: r̂rmax G r̂rall e r̂r0; equality was
achieved in only one out of eight conditions.

Summary and discussion

We know human observers take into account the spatial
and spectral distribution of light sources in a scene in judging
surface albedo and chromaticity (Boyaci et al., 2003, 2004;
Ripamonti et al., 2004; Snyder et al., 2005). To do so, a
visual system must obtain information about the spatial dis-
tribution of light sources in the scene from the scene itself
(the lighting model). We tested three possible cues, each of
which could provide information about the spatial distribu-
tion of light sources in a scene: (1) cast shadows, (2) shad-
ing of matte objects, and (3) the virtual images formed in
specular objects (Bhighlights[). We tested observers in
scenes with only one cue type available and in scenes with
all cues present. In this paper, we measured how accurately
observers estimate the parameters of the lighting model
from each of the three candidate cues. We do not claim that
the parameterization of the lighting model we have chosen
is the one used by the visual system, only that whatever pa-
rameterization the visual system uses can represent the range
of scenes captured by : (punctate-total balance) and GP (light
source direction). Our argument and analyses would not be
affected by a change of parameterization (Appendix B).
Given the logic of null hypothesis testing, we cannot con-

clude that an observer made no use of a cue when it was
available if we fail to reject the corresponding null hypoth-
esis. We can only note those cases where we found evi-
dence, in the form of a p value, that a particular observer
used a particular cue. We concluded that, in the scenes con-
taining only one cue type, at least some observers used each
of the cues to estimate the lighting model in Experiment 1.
In contrast, we reject this null hypothesis for the shading
cue for only one observer. This outcome may simply indi-
cate that the shading cue elements we provided (Bboxes[)
are not very good shading cues.
Furthermore, our results indicate that there are individual

differences in cue use. Such individual differences in cue use
are commonly found in the cue combination literature (Oru0
et al., 2003). Individual differences abound in depth per-
ception studies (for example, the widely ranging cue reli-
abilities across subjects found by Hillis, Ernst, Banks, &
Landy, 2002, or the large variation in abathic distance found
by Kontsevich, 1998). Moreover, recent studies show that
associative learning can alter perceptual appearance (Adams,
Graf, & Ernst, 2004; Jacobs & Fine, 1999; Sinha & Poggio,
2002) leading to the suggestion that cues can be learned
(Backus, 2005). If at least some cues are learned, then we
would expect individual differences as a result of differ-
ences in perceptual experience.
Our findings in this study suggest that the information

about spatial organization is useful in estimating the lighting

model of the scene and eventually surface albedo. Given
those results, it is plausible that the visual system uses the
information that it derives from the cues to the spatial or-
ganization of the illumination in estimating the lighting
model and surface albedo (or chromaticity).
In the second experiment, we tested whether observers

combined cues when more than one is present in the scene.
We used a criterion that we referred to as effective cue
combination: the observer must combine available cues into
an estimate that is more reliable than any of the cues in
isolation (Oru0 et al., 2003). We rejected the null hypoth-
esis of no effective cue combination. Observers were able
to combine information from multiple cues to produce es-
timates of the punctate-total ratio :̂: and =̂=P (the parameters
characterizing the lighting model) that were more reliable
than any of the three estimates that they derived in the
single cue conditions.
We also tested the hypothesis that observers combined

cues optimally. We rejected the hypothesis of optimal cue
combination for all (total of eight: two observers� two light
sources � two parameter estimates) but one condition. This
outcome is unsurprising. It is implausible that any biolog-
ical visual system performs any visual task optimally, just
as it is implausible that any coin is precisely Bfair.[ A
finding of Boptimality[ involves failing to reject the hy-
pothesis that the observer’s performance is optimal and
could be the result of a Type II error. A similar experiment
with more experimental trials (statistical power) would
likely reverse a finding of optimality. The criterion of ef-
fective cue combination, introduced in Oru0 et al. (2003),
is more useful in examining how biological organisms com-
bine cues and in determining whether they do so.

Appendix A

Combining p values

For each cue condition, we tested the null hypothesis
that none of the observers had made use of the cue(s) pres-
ent in the condition. For each observer in each condition,
we computed the exact p value for a test of the hypothesis
that this observer is using the cue(s) available, reported in
Table 1. It can be seen that several of these values are very
small. If we tested each of these values against the .05
level, we would simply record whether the exact value was
less than or equal to .05 (reject) or greater than .05 (not
reject). We wanted to combine this information. We made
use of the following: if the null hypothesis was true, then
the distribution of each of these exact p values would
be uniform on the interval [0,1]. That is, we would expect
the exact p value to be greater than .5 one half of the
time.
For each cue condition, we computed as a test statistic

the mean of the logarithm of the exact p values for each of
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the six observers, pk = 1, 2,I, 6,

K ¼ ~
6

k¼1

log10ðpkÞ=6: ðA1Þ

Figure 11 contains a histogram of the distribution of K
under the null hypothesis that none of the observers is
making use of the cue. If this hypothesis was true for any
cue condition, we would expect the computed value K to
fall above the 5th percentile of the histogram with prob-
ability .95. If, however, the p values for the test tend to be
small for some of the observers, then the test statistic K will
tend to be too small, falling in the extreme left tail of the
histogram. The value of the test statistic K for each cue
condition is marked with vertical red lines. We reject the
null hypothesis for all cue conditions at the .05 level. We
can report the exact p value of the test statistic K for each
cue condition, just as we can for any test statistic whose
distribution under the null hypothesis is known. These val-
ues are reported in the rightmost column of Table 1.

Appendix B

Reparameterization

The parameter estimate :̂: is only defined on the interval
[0,1] and its distribution near 0 and near 1 is highly skewed.

Ordinary confidence intervals, based on Gaussian distributions,
(e.g., T2 SD) could include values outside the range [0,1] that
are not physically possible. To avoid such difficulties we per-
formed the analysis with the following change of variable

+ ¼ log½ :

1j: �; ðB1Þ

whose range includes the entire real line (jV, V). The
function in Equation B1 has inverse

: ¼ e+

1þ e+
: ðB2Þ

Using Equations B1 and B2, we can translate back and
forth from one parameterization to the other.
All maximum likelihood estimates of confidence interval

limits and all hypothesis tests were computed in terms
of the + parameterization and then transformed into the :
parameterization by Equation B2. The justification for using
these procedures is that maximum likelihood estimation and
hypothesis testing based on likelihood ratios are invariant
under invertible re-parameterizations such as the ones above
(Pawitan, 2001, pp. 43Y45). For example, if :̂: is the MLE
of : in one parameterization, then its transformation
+̂+ ¼ log½:̂:=1j:̂:� will be equal to the MLE +̂+ if we instead
maximized likelihood in the other.
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Footnotes

1So that there would be no visible variation in shading
across the surface of the poles themselves.

2In designing the stimuli, we effectively superimposed
the virtual space containing the stimuli and the actual space
containing the observer. We speak of distances and
locations in the two spaces interchangeably.
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